Lattice Models of Bacterial Turbulence
细菌湍流的晶格模型
基本信息
- 批准号:EP/V048198/1
- 负责人:
- 金额:$ 25.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is something truly fascinating about coordinated behaviour of living organisms. Be it the simple pleasure of watching geometrical patterns or a deeper, almost philosophical, satisfaction of observing order appear from chaos, collective motion in schools of fish and flocks of birds or insects, so successfully popularised by Sir David Attenborough, appeals equally to the general public and scientists alike. Studies of how this behaviour comes about transformed our understanding of animal behaviour, biology of groups of organisms, and social interactions. Surprisingly, such phenomena have had a strong impact on statistical and soft matter physics by stimulating the development of what is now called the field of active matter. In the attempt to distill what aspects of such collective behaviour can be attributed to physical interactions, there emerged a new direction in non-equilibrium physics that seeks to understand the unique states of matter formed by particles that extract energy from their environment and transform it into self-propulsion.In this proposal we focus on dilute solutions of swimming bacteria - an archetypal model for swimming microorganisms. Such solutions often exhibit a unique dynamical state, known as "bacterial turbulence". At very low densities, bacterial suspensions appear featureless and disordered, while at higher, yet still sufficiently low densities, collective motion sets in on the scale of the system. We propose a high-risk, high-gain research programme that will establish a novel class of lattice models describing collective motion in microscopic self-propelled particles suspended in a fluid. Similar in spirit to other non-equilibrium lattice models, our model is simple enough to allow for detailed studies into the exact nature of collective motion.If successful, the model will gain the status similar to, say, the Ising model in condensed matter physics, and will establish itself as a new archetypal class of active matter systems, ultimately enriching our understanding of non-equilibrium physics and fascinating collective phenomena in nature.
生物体的协调行为确实令人着迷。无论是观看几何图案的简单乐趣,还是观察从混乱中出现的秩序的更深层次的,几乎是哲学的满足感,鱼群和鸟群或昆虫的集体运动,大卫阿滕伯勒爵士如此成功地推广,对公众和科学家都有同样的吸引力。对这种行为如何产生的研究改变了我们对动物行为、生物群体生物学和社会互动的理解。令人惊讶的是,这些现象对统计和软物质物理学产生了强烈的影响,刺激了现在所谓的活性物质领域的发展。在试图提炼这种集体行为的哪些方面可以归因于物理相互作用的过程中,出现了非平衡物理学的一个新方向,即试图理解粒子从环境中提取能量并将其转化为自我推进所形成的物质的独特状态。在这个提议中,我们专注于游泳细菌的稀溶液-游泳微生物的原型模型。这样的解决方案往往表现出独特的动力学状态,被称为“细菌湍流”。在非常低的密度下,细菌悬浮液看起来没有特征和无序,而在更高但仍然足够低的密度下,集体运动在系统的尺度上开始。我们提出了一个高风险,高收益的研究计划,将建立一类新的晶格模型描述集体运动的微观自推进粒子悬浮在流体中。与其他非平衡晶格模型类似,我们的模型足够简单,可以详细研究集体运动的确切性质。如果成功,该模型将获得类似于凝聚态物理学中的伊辛模型的地位,并将成为一类新的活性物质系统原型,最终丰富了我们对非平衡物理学和自然界中迷人的集体现象的理解。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active turbulence and spontaneous phase separation in inhomogeneous extensile active gels.
非均匀可拉伸活性凝胶中的活性湍流和自发相分离。
- DOI:10.1039/d2sm01188c
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Assante R
- 通讯作者:Assante R
Collective motion in a sheet of microswimmers
微型游泳者的集体运动
- DOI:10.1038/s42005-024-01587-9
- 发表时间:2024
- 期刊:
- 影响因子:5.5
- 作者:Bárdfalvy D
- 通讯作者:Bárdfalvy D
Hydrodynamic instabilities in a two-dimensional sheet of microswimmers embedded in a three-dimensional fluid
- DOI:10.1017/jfm.2023.985
- 发表时间:2024-02
- 期刊:
- 影响因子:3.7
- 作者:V. Škultéty;Dóra Bárdfalvy;Joakim Stenhammar;C. Nardini;Alexander Morozov
- 通讯作者:V. Škultéty;Dóra Bárdfalvy;Joakim Stenhammar;C. Nardini;Alexander Morozov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Morozov其他文献
Diffusion processes modeling in magnetic resonance imaging
磁共振成像中的扩散过程建模
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.7
- 作者:
S. Morozov;K. Sergunova;A. Petraikin;E. Akhmad;S. Kivasev;D. Semenov;I. Blokhin;Igor Karpov;A. Vladzymyrskyy;Alexander Morozov - 通讯作者:
Alexander Morozov
Purely elastic turbulence in pressure-driven channel flows
压力驱动通道流中的纯弹性湍流
- DOI:
10.1073/pnas.2318851121 - 发表时间:
2023 - 期刊:
- 影响因子:11.1
- 作者:
Martin Lellep;M. Linkmann;Alexander Morozov - 通讯作者:
Alexander Morozov
Creeping thermocapillary motion of a Newtonian droplet suspended in a viscoelastic fluid
- DOI:
10.1016/j.jnnfm.2023.105168 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Paolo Capobianchi;Mahdi Davoodi;Robert J. Poole;Marcello Lappa;Alexander Morozov;Mónica S.N. Oliveira - 通讯作者:
Mónica S.N. Oliveira
A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA
基因组 DNA 上核小体定位的一维统计力学模型
- DOI:
10.1088/1478-3975/13/1/016004 - 发表时间:
2015 - 期刊:
- 影响因子:2
- 作者:
S. Tesoro;I. Ali;Alexander Morozov;N. Sulaiman;Davide Marenduzzo - 通讯作者:
Davide Marenduzzo
Polarisierungen der Jacobi-Varietäten von Mumford-Kurven
Mumford-Kurven 的雅可比变化的极化
- DOI:
10.18725/oparu-3267 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Alexander Morozov - 通讯作者:
Alexander Morozov
Alexander Morozov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Morozov', 18)}}的其他基金
Purely elastic instabilities and turbulence in flows of polymer solutions
聚合物溶液流动中的纯弹性不稳定性和湍流
- 批准号:
EP/I004262/1 - 财政年份:2010
- 资助金额:
$ 25.21万 - 项目类别:
Fellowship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Using Machine Learning and Animal Models to Reveal Bacterial Subnetworks Essential for Development Within Complex Gut Microbiomes.
使用机器学习和动物模型揭示复杂肠道微生物组内发育所必需的细菌子网络。
- 批准号:
2312818 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Continuing Grant
21ENGBIO Reprogramming bacterial cells using whole-cell models
21ENGBIO 使用全细胞模型对细菌细胞进行重编程
- 批准号:
BB/W012235/1 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Research Grant
Task A 87: Therapeutic Testing in Murine Models of Bacterial Infection
任务 A 87:细菌感染小鼠模型的治疗测试
- 批准号:
10933932 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Animal models of SARS-CoV-2 bacterial Coinfection
SARS-CoV-2细菌混合感染的动物模型
- 批准号:
10354216 - 财政年份:2022
- 资助金额:
$ 25.21万 - 项目类别:
Investigating bacterial virulence of aquatic pathogens using multiple host-pathogen models
使用多种宿主-病原体模型研究水生病原体的细菌毒力
- 批准号:
RGPIN-2019-04444 - 财政年份:2022
- 资助金额:
$ 25.21万 - 项目类别:
Discovery Grants Program - Individual
Animal models of SARS-CoV-2 bacterial Coinfection
SARS-CoV-2细菌混合感染的动物模型
- 批准号:
10621752 - 财政年份:2022
- 资助金额:
$ 25.21万 - 项目类别:
Task A58: Therapeutic Testing in Murine Models of Bacterial Thigh, Lung, Bacteremia and Peritonitis Infections
任务 A58:细菌性大腿、肺、菌血症和腹膜炎感染的小鼠模型的治疗测试
- 批准号:
10655826 - 财政年份:2021
- 资助金额:
$ 25.21万 - 项目类别:
Task A58: Therapeutic Testing in Murine Models of Bacterial Thigh, Lung, Bacteremia and Peritonitis Infections
任务 A58:细菌性大腿、肺、菌血症和腹膜炎感染的小鼠模型的治疗测试
- 批准号:
10590044 - 财政年份:2021
- 资助金额:
$ 25.21万 - 项目类别:
Design and characterization of bacterial population dynamics in solid tumor models
实体瘤模型中细菌种群动态的设计和表征
- 批准号:
10212134 - 财政年份:2021
- 资助金额:
$ 25.21万 - 项目类别:
Transformative Technologies - Development of Novel Three-dimensional Co-culture Models of Bacterial Host-pathogen Interactions
变革性技术 - 细菌宿主-病原体相互作用的新型三维共培养模型的开发
- 批准号:
2672578 - 财政年份:2021
- 资助金额:
$ 25.21万 - 项目类别:
Studentship