Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
基本信息
- 批准号:EP/V048333/1
- 负责人:
- 金额:$ 25.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Incremental advances in semiconductor technology of the past decades led to unprecedented miniaturization of optoelectronic integrated circuits, which now use billions of transistors, each containing only hundreds of atoms. However, these most sophisticated devices still rely on collective phenomena such as electric currents and light beams. These classical concepts are limited by atomic-scale effects and allow no further progress through miniaturization. Overcoming this bottleneck, would require a new generation of devices where atomic scale effects are no longer an obstacle but are used as a resource to build circuits through precise placement of individual atoms while exploiting quantum effects to boost information storage and processing capacity.Recent innovations in semiconductor material science and technology offer new routes to atomic scale miniaturisation. This project relies on a new type of semiconductor quantum dots, which are tiny semiconductor crystals consisting of only a few thousand atoms. A comprehensive program of material development and experimental physics studies will seek to demonstrate quantum information storage and processing with nuclear magnetic states of individual atoms incorporated into a quantum dot. The broad goal of this proposal is to understand fundamental phenomena and develop material technologies that will stimulate and guide the transition from existing classical digital chips to future devices, which will eventually use every individual atom of a semiconductor crystal as a resource to build integrated circuits with Avogadro-scale number of elementary units and unprecedented information processing power and energy efficiency.
在过去的几十年里,半导体技术的不断进步导致了光电集成电路前所未有的小型化,现在使用数十亿个晶体管,每个晶体管只包含数百个原子。然而,这些最复杂的设备仍然依赖于电流和光束等集体现象。这些经典概念受到原子尺度效应的限制,无法通过小型化取得进一步进展。克服这一瓶颈,需要新一代的设备,其中原子尺度效应不再是一个障碍,而是作为一种资源,通过精确放置单个原子来构建电路,同时利用量子效应来提高信息存储和处理能力。半导体材料科学和技术的最新创新为原子尺度小型化提供了新的途径。这个项目依赖于一种新型的半导体量子点,它是一种仅由几千个原子组成的微小半导体晶体。一个材料开发和实验物理研究的综合项目将寻求证明将单个原子的核磁状态整合到量子点中的量子信息存储和处理。该提案的总体目标是了解基本现象并开发材料技术,这些技术将刺激和指导从现有的经典数字芯片到未来设备的过渡,最终将使用半导体晶体的每个原子作为资源,构建具有阿伏伽德罗尺度数量的基本单元和前所未有的信息处理能力和能源效率的集成电路。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approaching a fully-polarized state of nuclear spins in a solid.
- DOI:10.1038/s41467-024-45364-2
- 发表时间:2024-02-02
- 期刊:
- 影响因子:16.6
- 作者:Millington-Hotze, Peter;Dyte, Harry E.;Manna, Santanu;da Silva, Saimon F. Covre;Rastelli, Armando;Chekhovich, Evgeny A.
- 通讯作者:Chekhovich, Evgeny A.
Harnessing many-body spin environment for long coherence storage and high-fidelity single-shot qubit readout.
- DOI:10.1038/s41467-022-31618-4
- 发表时间:2022-07-13
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Nuclear spin diffusion in the central spin system of a GaAs/AlGaAs quantum dot.
- DOI:10.1038/s41467-023-38349-0
- 发表时间:2023-05-09
- 期刊:
- 影响因子:16.6
- 作者:Millington-Hotze, Peter;Manna, Santanu;da Silva, Saimon F. Covre;Rastelli, Armando;Chekhovich, Evgeny A.
- 通讯作者:Chekhovich, Evgeny A.
Hyperfine interaction limits polarization entanglement of photons from semiconductor quantum dots
- DOI:10.1103/physrevb.108.l081405
- 发表时间:2023-02
- 期刊:
- 影响因子:3.7
- 作者:C. Schimpf;F. B. Basset;Maximilian Aigner;Wolfgang Attenender;L. Ginés;G. Undeutsch;M. Reindl;D. Huber;D. Gangloff;E. Chekhovich;C. Schneider;S. Höfling;A. Predojevič;R. Trotta;A. Rastelli
- 通讯作者:C. Schimpf;F. B. Basset;Maximilian Aigner;Wolfgang Attenender;L. Ginés;G. Undeutsch;M. Reindl;D. Huber;D. Gangloff;E. Chekhovich;C. Schneider;S. Höfling;A. Predojevič;R. Trotta;A. Rastelli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evgeny Chekhovich其他文献
Evgeny Chekhovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evgeny Chekhovich', 18)}}的其他基金
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
- 批准号:
EP/V048333/2 - 财政年份:2024
- 资助金额:
$ 25.59万 - 项目类别:
Research Grant
相似国自然基金
1keV/atom以下的团簇离子注入固体极浅表面的过程研究
- 批准号:11075076
- 批准年份:2010
- 资助金额:42.0 万元
- 项目类别:面上项目
双星中性原子探测图像在地磁暴期间的时序演化过程反演分析
- 批准号:40974100
- 批准年份:2009
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
- 批准号:
EP/V048333/2 - 财政年份:2024
- 资助金额:
$ 25.59万 - 项目类别:
Research Grant
Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
- 批准号:
EP/V027700/1 - 财政年份:2021
- 资助金额:
$ 25.59万 - 项目类别:
Research Grant
Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
- 批准号:
EP/V030035/1 - 财政年份:2021
- 资助金额:
$ 25.59万 - 项目类别:
Research Grant
Optically interfacing a single atom tweezer array for quantum photonics
用于量子光子学的单原子镊子阵列的光学接口
- 批准号:
21H01011 - 财政年份:2021
- 资助金额:
$ 25.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theoretical studies on nonperturbative methods of analyzing quantum many-body dynamics subject to single-atom-resolved measurement and control
单原子分辨测控量子多体动力学非微扰分析方法的理论研究
- 批准号:
19K23424 - 财政年份:2019
- 资助金额:
$ 25.59万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Single atom quantum node via cavity quantum electrodynamics
通过腔量子电动力学的单原子量子节点
- 批准号:
490071-2016 - 财政年份:2019
- 资助金额:
$ 25.59万 - 项目类别:
Postgraduate Scholarships - Doctoral
Single atom quantum node via cavity quantum electrodynamics
通过腔量子电动力学的单原子量子节点
- 批准号:
490071-2016 - 财政年份:2018
- 资助金额:
$ 25.59万 - 项目类别:
Postgraduate Scholarships - Doctoral