Strained germanium photonic crystal membranes for scalable and efficient silicon-based photonic devices

用于可扩展且高效的硅基光子器件的应变锗光子晶体膜

基本信息

  • 批准号:
    EP/V048732/1
  • 负责人:
  • 金额:
    $ 25.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Silicon is ubiquitous for electronics and the most widely exploited semiconductor in the world available in plentiful and cheap supply. In spite of its success in electronics, silicon is fundamentally limited in terms of its ability to produce light. This is due to its so-called indirect band gap which means that electrons cannot easily lose energy by producing photons. In contrast, in direct band gap compound semiconductors such as GaAs and InP electrons can very easily lose energy resulting in the production of photons. Consequently, such semiconductors are widely exploited in light emitters including lasers and light emitting diodes. However, compound semiconductors are much more expensive to produce. Hence there is a strong desire to be able to produce optically-efficient direct band gap semiconductors on a silicon-based platform. This project aims to resolve this fundamental constraint by develop an entirely new approach to fabricating direct band gap germanium layers on silicon. Germanium can be readily grown on silicon and has a band gap that is much closer to being direct. It has been theoretically predicted that by straining the germanium crystal by >2% (tensile), it will become a direct band gap semiconductor. Producing stable highly strained germanium layers has proven to be technologically challenging. We will overcome this challenge using our recently discovered ion-implantation method to generate stable high tensile strained germanium layers. Such layers offer the potential to achieve record optical efficiencies in germanium. Using these layers we will demonstrate optical gain and lasing in photonic crystal nanocavities in the mid-infrared using an all group-IV based system. This combination of electronic- and photonic band structure and strain engineering offers a step-change in developing lasers on silicon with strong exploitation potential to scale-up and transform sensors for medical, environmental and industrial applications.
硅在电子产品中无处不在,是世界上最广泛利用的半导体材料,供应充足且价格低廉。尽管硅在电子学上取得了成功,但从根本上说,它的发光能力是有限的。这是由于其所谓的间接带隙,这意味着电子不会轻易地通过产生光子而失去能量。相反,在GaAs和InP等直接带隙化合物半导体中,电子很容易失去能量,从而产生光子。因此,这种半导体被广泛应用于光发射器,包括激光器和发光二极管。然而,化合物半导体的生产成本要高得多。因此,人们强烈希望能够在硅基平台上生产光学高效的直接带隙半导体。该项目旨在通过开发一种全新的方法在硅上直接制造锗带隙层来解决这一基本限制。锗可以很容易地生长在硅上,并且具有更接近于直接的带隙。从理论上预测,将锗晶体拉伸2%(拉伸),将成为直接带隙半导体。事实证明,生产稳定的高应变锗层在技术上具有挑战性。我们将使用我们最近发现的离子注入方法来克服这一挑战,以产生稳定的高拉伸应变锗层。这种层提供了在锗中实现创纪录光学效率的潜力。利用这些层,我们将展示光学增益和激光在光子晶体纳米腔在中红外使用全族四基系统。这种电子和光子能带结构与应变工程的结合,为硅基激光器的开发提供了一个阶梯式的变化,具有强大的开发潜力,可以扩大和改造医疗、环境和工业应用的传感器。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Auger Recombination in Mid-Infrared Quantum Well Lasers
中红外量子阱激光器中的俄歇复合
  • DOI:
    10.1109/cleo/europe-eqec52157.2021.9542167
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eales T
  • 通讯作者:
    Eales T
Strain-balanced GaAs 1-x Bi x /GaN y As 1-y W-type quantum wells for GaAs-based 1.3-1.6 µm lasers
用于 GaAs 基 1.3-1.6 µm 激光器的应变平衡 GaAs 1-x Bi x /GaN y As 1-y W 型量子阱
  • DOI:
    10.1109/nusod52207.2021.9541434
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Davidson Z
  • 通讯作者:
    Davidson Z
Formamidinium Lead Halide Perovskite Nanocomposite Scintillators.
Effect of bismuth incorporation on recombination mechanisms in GaAsBi/GaAs heterostructures
铋掺入对 GaAsBi/GaAs 异质结构复合机制的影响
  • DOI:
    10.1007/s10854-023-09839-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Batool Z
  • 通讯作者:
    Batool Z
Reduced Temperature-Dependence of Optical Gain in Type-II GaAs-based "W"-Laser Structures
降低 II 型 GaAs 基“W”激光器结构中光学增益的温度依赖性
  • DOI:
    10.23919/islc52947.2022.9943462
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Duffy D
  • 通讯作者:
    Duffy D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Sweeney其他文献

Stephen Sweeney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Sweeney', 18)}}的其他基金

Realising a solid state photomultiplier and infrared detectors through Bismide containing semiconductors
通过含铋半导体实现固态光电倍增管和红外探测器
  • 批准号:
    EP/N021037/1
  • 财政年份:
    2016
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant
Exploring Short Wavelength Limits for High Performance Quantum Cascade Lasers
探索高性能量子级联激光器的短波长限制
  • 批准号:
    EP/H050787/1
  • 财政年份:
    2010
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant
Efficient Photonic Devices for Near- and Mid-Infrared Applications
用于近红外和中红外应用的高效光子器件
  • 批准号:
    EP/H005587/1
  • 财政年份:
    2010
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Fellowship
Materials World Network: III-V Bismide Materials for IR and Mid IR Semiconductors
材料世界网络:用于红外和中红外半导体的 III-V 双酰胺材料
  • 批准号:
    EP/G064725/1
  • 财政年份:
    2009
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant

相似海外基金

Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant
FuSe-TG: Co-Design of Germanium Oxide-based Semiconductors from Deposition to Devices
FuSe-TG:氧化锗基半导体从沉积到器件的协同设计
  • 批准号:
    2235208
  • 财政年份:
    2023
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Standard Grant
Development of Germanium Ring-Contact Detectors for LEGEND-1000
开发用于 LEGEND-1000 的锗环接触探测器
  • 批准号:
    2310027
  • 财政年份:
    2023
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Standard Grant
The research on thermal conductivities of one-dimensional van der Waals heterostructures
一维范德华异质结构的热导率研究
  • 批准号:
    22KJ0648
  • 财政年份:
    2023
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线
  • 批准号:
    EP/X039757/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Grant
Affordable Shortwave Infrared Spectroscopy for Stroke Risk Screening in Children with Sickle Cell Disease
经济实惠的短波红外光谱仪用于镰状细胞病儿童中风风险筛查
  • 批准号:
    10730967
  • 财政年份:
    2023
  • 资助金额:
    $ 25.79万
  • 项目类别:
Rapid and high-contrast photothermal microscopy with a novel tunable ZGP source
具有新型可调谐 ZGP 光源的快速高对比度光热显微镜
  • 批准号:
    10600781
  • 财政年份:
    2023
  • 资助金额:
    $ 25.79万
  • 项目类别:
Point contact germanium detectors for rare event searches
用于罕见事件搜索的点接触锗探测器
  • 批准号:
    SAPIN-2017-00023
  • 财政年份:
    2022
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Subatomic Physics Envelope - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了