Efficient Photonic Devices for Near- and Mid-Infrared Applications

用于近红外和中红外应用的高效光子器件

基本信息

  • 批准号:
    EP/H005587/1
  • 负责人:
  • 金额:
    $ 127.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

This project aims to address many issues of growing importance in today's world. We are all becoming increasingly technology-dependent, whether for entertainment, critical areas, e.g. healthcare and perhaps most notably for communication. All of these technologies require energy and as our appetite for higher performance, faster and better technology increases, the demand on natural resources increases correspondingly. Photonics (the use and manipulation of light) is perhaps one of the most widely used technologies, whether it be for sending information at high speeds across the internet, for reading/writing data onto DVDs, laser surgery and so on. Photonic components (lasers, light emitting diodes etc.) are the fundamental building blocks of this technology and are produced in their billions annually (with revenues in the multi $1Bs). In spite of the widespread use of these devices, their efficiency is often relatively low, and compounded by a strong temperature sensitivity, particularly for devices operating in the near- and mid-infrared regions of the electromagnetic spectrum. This has largely held back the widespread deployment of mid-infrared lasers, for example in environmental and medical sensing (many gases are absorbed at these wavelengths) and other forms of free-space optical communication. In the near-infrared, telecommunications lasers operating in the optical fibre optimum transmission window at 1.55um are both inefficient and temperature sensitive. As a result, these devices require additional control electronics which consume significantly more power than the lasers themselves! Typically, more than 90% of the energy is such a system is wasted as heat.This proposal aims to tackle these issues in a coordinated manner since the core issues influencing near- and mid-infrared emitters is the same. The approach of this project is two-fold: (a) to work to develop a better understanding of the physical processes which give rise to poor efficiencies and to work in collaboration with other leading international groups towards developing new semiconductor materials systems which the PI has predicted will strongly suppress such processes (e.g. narrow band gap quantum dot systems and relatively unexplored semiconductor alloys, such as (In)GaAsBi) and (b) to develop novel materials such as dilute nitride phosphides to embed photonic components directly in electronic circuits, which are primarily silicon based. Routing data optically in such circuits could significantly reduce power (heat) dissipation in computers. Together, these approaches offer the potential to provide both large energy savings due to the use of better materials, and cost savings in manufacture, due to integration.The materials and devices in this project will be obtained from leading semiconductor growth groups in North America, Europe and Asia. At Surrey, the PI has established unique experimental techniques (e.g. low temperature and high pressure systems) to probe the physical properties of photonic materials and devices and will use these to determine both the basic materials parameters and the influence these have on device performance. The fellowship will allow the PI an excellent opportunity to lead a significant effort working together with a strong international team to investigate the fundamental physical characteristics of new materials with the aim of developing high efficiency improved photonic technology for widespread applications of importance to UK industry.
该项目旨在解决当今世界日益重要的许多问题。我们都变得越来越依赖科技,无论是在娱乐、关键领域,例如医疗保健,或许最引人注目的是在沟通方面。所有这些技术都需要能源,随着我们对更高性能、更快、更好技术的需求增加,对自然资源的需求也相应增加。光子学(光的使用和操纵)可能是应用最广泛的技术之一,无论是在互联网上高速发送信息,还是在DVD上读/写数据,还是激光手术等等。光子组件(激光器、发光二极管等)是这项技术的基本组成部分,每年生产数十亿美元(收入高达10亿美元)。尽管这些设备被广泛使用,但它们的效率往往相对较低,再加上强烈的温度敏感性,特别是对于工作在电磁光谱的近红外和中红外区域的设备而言。这在很大程度上阻碍了中红外激光的广泛部署,例如在环境和医疗传感(许多气体在这些波长上被吸收)和其他形式的自由空间光通信中。在近红外中,工作在1.55微米光纤最佳传输窗口中的电信激光器效率低且对温度敏感。因此,这些设备需要额外的控制电子设备,这些电子设备比激光器本身消耗的功率要大得多!通常,超过90%的能量是这样一个系统的热量被浪费。这项建议旨在以协调的方式解决这些问题,因为影响近红外和中红外发射器的核心问题是相同的。该项目采取双重措施:(A)致力于更好地了解导致低效率的物理过程,并与其他领先的国际组织合作,开发新的半导体材料系统(如国际电工联合会预测的将有力抑制这种过程的半导体材料系统)和(B)开发新材料,如稀氮磷化物,用于在主要以硅基为基础的电子电路中直接嵌入光子组件。在这样的电路中以光学方式传送数据可以显著降低计算机中的功率(热量)消耗。总而言之,这些方法提供了由于使用更好的材料而节省大量能源的潜力,以及由于集成而在制造中节省成本的潜力。该项目中的材料和设备将从北美、欧洲和亚洲的领先半导体增长集团获得。在萨里,PI建立了独特的实验技术(例如低温和高压系统)来探测光子材料和器件的物理属性,并将使用这些技术来确定基本材料参数和这些参数对器件性能的影响。该奖学金将使PI有一个绝佳的机会来领导一项重要的工作,与一支强大的国际团队合作,研究新材料的基本物理特性,目的是开发高效、改进的光子技术,用于对英国工业具有重要意义的广泛应用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Giant bowing of the band gap and spin-orbit splitting energy in GaP1-xBix dilute bismide alloys
  • DOI:
    10.1038/s41598-019-43142-5
  • 发表时间:
    2019-05-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Bushell, Zoe L.;Broderick, Christopher A.;Sweeney, Stephen J.
  • 通讯作者:
    Sweeney, Stephen J.
Semiconductor Quantum Well Lasers With a Temperature-Insensitive Threshold Current
具有温度不敏感阈值电流的半导体量子阱激光器
Effect of bismuth incorporation on recombination mechanisms in GaAsBi/GaAs heterostructures
铋掺入对 GaAsBi/GaAs 异质结构复合机制的影响
  • DOI:
    10.1007/s10854-023-09839-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Batool Z
  • 通讯作者:
    Batool Z
Relationship between Human Pupillary Light Reflex and Circadian System Status.
  • DOI:
    10.1371/journal.pone.0162476
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bonmati-Carrion MA;Hild K;Isherwood C;Sweeney SJ;Revell VL;Skene DJ;Rol MA;Madrid JA
  • 通讯作者:
    Madrid JA
The electronic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing
  • DOI:
    10.1063/1.4728028
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Batool, Z.;Hild, K.;Sweeney, S. J.
  • 通讯作者:
    Sweeney, S. J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Sweeney其他文献

Stephen Sweeney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Sweeney', 18)}}的其他基金

Strained germanium photonic crystal membranes for scalable and efficient silicon-based photonic devices
用于可扩展且高效的硅基光子器件的应变锗光子晶体膜
  • 批准号:
    EP/V048732/1
  • 财政年份:
    2021
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Research Grant
Realising a solid state photomultiplier and infrared detectors through Bismide containing semiconductors
通过含铋半导体实现固态光电倍增管和红外探测器
  • 批准号:
    EP/N021037/1
  • 财政年份:
    2016
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Research Grant
Exploring Short Wavelength Limits for High Performance Quantum Cascade Lasers
探索高性能量子级联激光器的短波长限制
  • 批准号:
    EP/H050787/1
  • 财政年份:
    2010
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Research Grant
Materials World Network: III-V Bismide Materials for IR and Mid IR Semiconductors
材料世界网络:用于红外和中红外半导体的 III-V 双酰胺材料
  • 批准号:
    EP/G064725/1
  • 财政年份:
    2009
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Research Grant

相似海外基金

Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
  • 批准号:
    2310284
  • 财政年份:
    2024
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Standard Grant
Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
  • 批准号:
    24K17627
  • 财政年份:
    2024
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
I-Corps: Nonreciprocal Photonic Devices for Solar Thermophotovoltaics
I-Corps:用于太阳能热光伏发电的非互易光子器件
  • 批准号:
    2344708
  • 财政年份:
    2024
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Standard Grant
High yield adaptive laser nanomanufacturing system for photonic devices
用于光子器件的高产量自适应激光纳米制造系统
  • 批准号:
    LP210100467
  • 财政年份:
    2023
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Linkage Projects
FuSe-TG: Co-Design of Chiral Quantum Photonic Devices and Circuits Integrated with 2D Material Heterostructures
FuSe-TG:手性量子光子器件和与二维材料异质结构集成的电路的协同设计
  • 批准号:
    2235276
  • 财政年份:
    2023
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Standard Grant
Elucidation of Luminescence Mechanisms in Carbon Dots and Their Application to Photonic-Structured Optoelectronic Devices
碳点发光机制的阐明及其在光子结构光电器件中的应用
  • 批准号:
    23KJ2166
  • 财政年份:
    2023
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
PIC: Charge Trapped Photonic Devices for Computing, Sensing and Sequencing Applications
PIC:用于计算、传感和排序应用的电荷捕获光子器件
  • 批准号:
    2315085
  • 财政年份:
    2023
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
  • 批准号:
    2240414
  • 财政年份:
    2023
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Standard Grant
Probe station for active photonic devices
有源光子器件探针台
  • 批准号:
    523089691
  • 财政年份:
    2023
  • 资助金额:
    $ 127.84万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了