Seeing magnons at spin-to-charge conversion interfaces
在自旋-电荷转换界面看到磁振子
基本信息
- 批准号:EP/V048767/1
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Semiconductor devices have revolutionised science and technology in the past decades. They are based on the ability to control the transport of electron charges on the micrometer, and increasingly the nanoscale. The continuous size scaling of transistors - the building blocks of logic devices - is reaching a bottleneck, with heat management and speed reaching physical limits. Spintronic devices is a class of devices which utilises the spin of the electron in addition to its charge, which are believed to have the potential to overcome current challenges in electronics. A way to achieve spin transport is based on the generation and propagation of magnons, spin waves which carry spin momentum. These spin currents can be converted to charge currents at interfaces of magnon generating magnetic materials, with heavy metals such as platinum, where they are driven by temperature gradients. Understanding the phenomena at the charge-to-spin and spin-to-charge conversion at this interface is fundamental for the newly emerging fields of thermal spintronics and spin caloritronics and the design of new electronic devices. In this project we propose a method to detect and map magnons, by exploiting the ground-breaking capabilities of modern state-of-the-art electron microscopes. This project will provide a new way of studying the fundamentals of magnetic ordering and spin wave excitations in a variety of materials and device structures. Combined with the added wealth of information that analytical electron microscopy can provide such as local atomic structure and chemistry this methodology will provide a complete picture of magnetic and electronic properties of materials and devices.
在过去的几十年里,半导体器件已经彻底改变了科学和技术。它们基于在微米上控制电子电荷传输的能力,并且越来越多地是纳米级的。晶体管(逻辑器件的构建块)的持续尺寸缩放正在达到瓶颈,热管理和速度达到物理极限。自旋电子器件是一类利用电子自旋和电荷的器件,被认为具有克服电子学当前挑战的潜力。实现自旋输运的一种方法是基于磁振子的产生和传播,磁振子是携带自旋动量的自旋波。这些自旋电流可以在磁振子产生磁性材料的界面处转换为电荷电流,其中重金属如铂,在那里它们由温度梯度驱动。理解在这个界面上的电荷-自旋和自旋-电荷转换现象对于新兴的热自旋电子学和自旋热电子学领域以及新电子器件的设计是基础。在这个项目中,我们提出了一种方法来检测和映射磁振子,通过利用现代最先进的电子显微镜的突破性能力。本计画将提供一种新的方法来研究各种材料与元件结构中的磁序与自旋波激发的基本原理。结合分析电子显微镜可以提供的额外丰富的信息,如局部原子结构和化学,这种方法将提供材料和设备的磁性和电子特性的完整图片。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Theory of magnon diffuse scattering in scanning transmission electron microscopy
- DOI:10.1103/physrevb.104.214418
- 发表时间:2021-05
- 期刊:
- 影响因子:3.7
- 作者:Keenan Lyon;A. Bergman;Paul M. Zeiger;D. Kepaptsoglou;Q. Ramasse;J. Idrobo;J. Rusz
- 通讯作者:Keenan Lyon;A. Bergman;Paul M. Zeiger;D. Kepaptsoglou;Q. Ramasse;J. Idrobo;J. Rusz
Towards the In-situ Detection of Spin Charge Accumulation at a Metal/Insulator Interface Using STEM-EELS Technique
使用 STEM-EELS 技术原位检测金属/绝缘体界面处的自旋电荷积累
- DOI:10.1017/s1431927622008972
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:El Hajraoui K
- 通讯作者:El Hajraoui K
Unveiling the impact of temperature on magnon diffuse scattering detection in the transmission electron microscope
- DOI:10.1103/physrevb.108.134435
- 发表时间:2023-02
- 期刊:
- 影响因子:3.7
- 作者:J. '. Castellanos-Reyes;Paul M. Zeiger;Anders Bergman;D. Kepaptsoglou;Q. Ramasse;J. Idrobo;Ján Rusz
- 通讯作者:J. '. Castellanos-Reyes;Paul M. Zeiger;Anders Bergman;D. Kepaptsoglou;Q. Ramasse;J. Idrobo;Ján Rusz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Despoina Maria Kepaptsoglou其他文献
Despoina Maria Kepaptsoglou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Designing and Probing Emergent Phases with Tunable Magnons in Graphene
职业:利用石墨烯中的可调磁振子设计和探测涌现相
- 批准号:
2339623 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
A tango between magnons and phonons in 2D van der Waals insulating magnets
二维范德华绝缘磁体中磁子和声子之间的探戈
- 批准号:
2219046 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Transport of the antiferromagnetic order
反铁磁序的传输
- 批准号:
23K13050 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Synthesis of novel ferromagnetic amorphous oxides and excitation of magnons in them
新型铁磁非晶氧化物的合成及其磁振子的激发
- 批准号:
21K19025 - 财政年份:2021
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Angular momentum transport in insulators: Magnons and other emergent excitations
绝缘体中的角动量传输:磁振子和其他紧急激发
- 批准号:
2102028 - 财政年份:2021
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Magnons for quantum information
用于量子信息的磁振子
- 批准号:
21K13847 - 财政年份:2021
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
First-principles calculation of finite-temperature transport properties including effects of phonons and magnons
有限温度输运特性的第一性原理计算,包括声子和磁子的影响
- 批准号:
21K03397 - 财政年份:2021
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnon-phonon hybridization in nearly compensated magnets for thermoelecric conversion and heat control
近补偿磁体中的磁子-声子杂化用于热电转换和热控制
- 批准号:
20K05297 - 财政年份:2020
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonreciprocal magnons in noncentrosymmetric magnets
非中心对称磁体中的非互易磁振子
- 批准号:
19H01834 - 财政年份:2019
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)