QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons

QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步

基本信息

  • 批准号:
    2326528
  • 负责人:
  • 金额:
    $ 99.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

The aim of this project is to accelerate the development and adoption of quantum sensing platforms to drive technologically-relevant advances in magnetic materials, including near-term materials needed to address critical clean energy challenges, such as the need for miniature and efficient power converters in electric vehicles. At a more fundamental level, this project will also accelerate progress in understanding cutting edge ultrathin magnetic materials. The project brings together an interdisciplinary team of experimental physicists, theorists, and engineers to develop a magnetic quantum sensing platform and bring it from proof-of-concept to practical application. The proposed quantum sensing approach is based on the electron spins of defects in diamond (the nitrogen-vacancy defect). The quantum state of the spins will be used to detect magnetic waves known as magnons in novel magnetic materials, yielding information about a material’s magnetic properties and dynamics with high spatial and time resolution. On the basic science of quantum sensing, this team will use testbed systems and theory to develop new modalities of magnon quantum sensing. These new modalities will be developed with an eye towards solving outstanding problems in magnetic materials. In order to accelerate progress, the team will engineer Quantum-Enabled Magnon Sensing (QuEMS) devices based on micro/nano-electromechanical system (MEMS/NEMS) expertise to allow high throughput application of these quantum sensing techniques with diverse materials. The team will apply the QuEMS platform to two currently relevant magnetic materials systems: atomically-thin magnets and nanocrystalline soft magnetic (NSM) alloys. Atomically-thin magnetic materials are interesting from a fundamental perspective, as their two-dimensional nature results in novel magnetic properties for individual layers, and complex interactions when these layers are stacked. NSM alloys are an emerging class of magnetic materials with near-term application due to their extremely low energy loss in devices such as transformers and power converters. These two materials classes both exhibit phenomena on fast time scales and nanometer length scales, making the quantum sensing platform in this prject a powerful tool for understanding and developing these materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是加速量子传感平台的开发和采用,以推动磁性材料的技术相关进步,包括解决关键清洁能源挑战所需的近期材料,例如电动汽车中对微型高效电源转换器的需求。在更基本的层面上,这个项目也将加速理解前沿超薄磁性材料的进展。该项目汇集了一个由实验物理学家、理论家和工程师组成的跨学科团队,共同开发一个磁量子传感平台,并将其从概念验证推向实际应用。提出的量子传感方法是基于金刚石中缺陷(氮空位缺陷)的电子自旋。自旋的量子态将被用于探测新型磁性材料中的磁振子,从而获得有关材料磁性和动力学的高空间和时间分辨率信息。在量子传感的基础科学方面,该团队将使用测试平台系统和理论来开发磁振子量子传感的新模式。这些新模式将着眼于解决磁性材料中的突出问题。为了加速进展,该团队将设计基于微/纳米机电系统(MEMS/NEMS)专业知识的量子使能磁振子传感(QuEMS)器件,以允许这些量子传感技术与不同材料的高通量应用。该团队将把QuEMS平台应用于两种目前相关的磁性材料系统:原子薄磁铁和纳米晶软磁(NSM)合金。从基本的角度来看,原子薄磁性材料是有趣的,因为它们的二维性质导致了单个层的新磁性,以及这些层堆叠时复杂的相互作用。NSM合金是一种新兴的磁性材料,由于其极低的能量损耗,在变压器和电源转换器等设备中具有近期的应用前景。这两类材料都在快速时间尺度和纳米长度尺度上表现出现象,使得本项目的量子传感平台成为理解和开发这些材料的有力工具。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jesse Berezovsky其他文献

Spatial imaging of magnetically patterned nuclear spins in GaAs
GaAs 中磁图案核自旋的空间成像
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Stephens;Roland Kawakami;Jesse Berezovsky;M. Hanson;D. Shepherd;A. Gossard;D. Awschalom
  • 通讯作者:
    D. Awschalom

Jesse Berezovsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
  • 批准号:
    2326784
  • 财政年份:
    2023
  • 资助金额:
    $ 99.57万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了