Biofilm Resistant Liquid-like Solid Surfaces in Flow Situations

流动情况下的生物膜抗液体状固体表面

基本信息

  • 批准号:
    EP/V049615/1
  • 负责人:
  • 金额:
    $ 58.29万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Biofilms are microbial cells embedded within a self-secreted extracellular polymeric substance (EPS) matrix which adhere to substrates. Biofilms are central to some of the most urgent global challenges across diverse fields of application, from medicine to industry to the environment and exert considerable economic and social impact. For example, catheter-associated urinary tract infections (CAUTI) in hospitals has been estimated to cause additional health-care costs of £1-2.5 billion in the United Kingdom alone (Ramstedt et al, Macromolec. Biosci. 19, 2019) and to cause over 2000 deaths per year (Feneley et al, J. Med. Eng. Technol. 39, 2015). To combat biofilm growth on surfaces, chemical-based approaches using immobilization of antimicrobial agents (i.e. antibiotics, silver particles) can trigger antimicrobial resistance (AMR), but are often not sustainable. Alternatively, bio-inspired nanostructured surfaces (e.g. cicada wing, lotus leaf) can be used, but their effects often may not last. A recent innovation in creating slippery surfaces has been inspired by the slippery surface strategy of the carnivorous Nepenthes pitcher plant. These slippery surfaces involve the impregnation of a porous or textured solid surface with a liquid lubricant locked-in to the structure. Such liquid surfaces have been shown to have promise as antifouling surfaces by inhibiting the direct access to the solid surface for biofilm attachment, adhesion and growth. However, the antibiofilm performance of these new liquid surfaces under flow conditions remains a concern due to flow-induced depletion of lubricant. Here we propose a novel anti-biofilm surface by creating permanently bound slippery liquid-like solid surfaces. Success would transform our understanding about bacteria living on surfaces and open-up new design paradigms for the development of next generation antibiofilm surfaces for a wide range of applications (e.g. biomedical devices and ship hulls). To enable the successful delivery of this project, it requires us to combine cross-disciplinary skills ranging from materials chemistry, physical and chemical characterisations of materials surfaces, nanomechanics, microbiology, biomechanics, to computational mechanics. The project objectives well align with EPSRC Healthcare Technologies Grand Challenges, addressing the topics of controlling the amount of physical intervention required, optimizing treatment, and transforming community health and care. In parallel, we shall contribute to the advancement of Cross-Cutting Research Capabilities (e.g. advanced materials, future manufacturing technologies and sustainable design of medical devices) that are essential for delivering these Grand Challenges. In particular, this research will employ nanomechanical tests to determine bacteria adhesion and microfluidics techniques for biofilm characterisation, which enables us to create novel approaches in computational engineering through the formulation and validation of sophisticated numerical models of bacteria attachment and biofilm mechanics.
生物膜是指微生物细胞嵌入一种附着在底物上的自分泌的细胞外聚合物(EPS)基质中。从医学到工业再到环境,生物膜在各种应用领域都是一些最紧迫的全球挑战的核心,并产生了相当大的经济和社会影响。例如,据估计,仅在英国,医院中导尿管相关性尿路感染(CAUTI)就造成了10 - 25亿英镑的额外保健费用(Ramstedt等人,Macromolec)。并导致每年2000多人死亡(Feneley et al ., J. Med. Eng.)。technology . 39, 2015)。为了对抗表面上的生物膜生长,使用固定化抗菌剂(即抗生素、银颗粒)的化学方法可引发抗菌素耐药性(AMR),但通常不可持续。另外,可以使用仿生纳米结构表面(例如蝉翅、荷叶),但它们的效果通常不会持久。最近一项创造光滑表面的创新受到了肉食性猪笼草光滑表面策略的启发。这些光滑的表面包括在多孔或有纹理的固体表面上浸渍一种锁定在结构中的液体润滑剂。这种液体表面已经被证明有希望作为防污表面,通过抑制生物膜附着、粘附和生长直接接近固体表面。然而,由于流动导致润滑剂耗竭,这些新型液体表面在流动条件下的抗菌膜性能仍然是一个值得关注的问题。在这里,我们提出了一种新的抗生物膜表面,通过创建永久结合光滑的液体状固体表面。成功将改变我们对生活在表面上的细菌的理解,并为下一代抗菌膜表面的广泛应用(例如生物医学设备和船体)的开发开辟新的设计范例。为了使这个项目的成功交付,它需要我们结合跨学科的技能,从材料化学、材料表面的物理和化学特征、纳米力学、微生物学、生物力学到计算力学。该项目的目标与EPSRC医疗技术大挑战非常一致,解决了控制所需物理干预量、优化治疗和改变社区卫生和护理的主题。与此同时,我们将促进跨领域研究能力的进步(例如,先进材料、未来制造技术和医疗设备的可持续设计),这对应对这些重大挑战至关重要。特别是,本研究将采用纳米力学测试来确定细菌粘附和微流体技术的生物膜表征,这使我们能够通过制定和验证细菌附着和生物膜力学的复杂数值模型,在计算工程中创造新的方法。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions.
  • DOI:
    10.1021/acsami.1c14533
  • 发表时间:
    2022-02-09
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Zhu, Yufeng;McHale, Glen;Dawson, Jack;Armstrong, Steven;Wells, Gary;Han, Rui;Liu, Hongzhong;Vollmer, Waldemar;Stoodley, Paul;Jakubovics, Nicholas;Chen, Jinju
  • 通讯作者:
    Chen, Jinju
Simultaneous determination of the mechanical properties and turgor of a single bacterial cell using atomic force microscopy
使用原子力显微镜同时测定单个细菌细胞的机械特性和膨胀度
  • DOI:
    10.1039/d2nr02577a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Han R
  • 通讯作者:
    Han R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinju Chen其他文献

On the determination of coating toughness during nanoindentation
  • DOI:
    10.1016/j.surfcoat.2011.12.006
  • 发表时间:
    2012-02
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Jinju Chen
  • 通讯作者:
    Jinju Chen
Hierarchical rose-petal surfaces delay the early-stage bacterial 1 biofilm growth 2
分层的玫瑰花瓣表面延迟了早期细菌 1 生物膜的生长 2
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunyi Cao;Saikat Jana;Leon Bowen;Xiaolong Tan;Hongzhong Liu;Nadia Rostami;James Brown;Nicholas S. Jakubovics;Jinju Chen
  • 通讯作者:
    Jinju Chen
Ag nanoparticle-decorated Bisub2/subOsub3/sub-TiOsub2/sub heterogeneous nanotubular photocatalysts for enhanced degradation of organic contaminants
Muco-ciliary clearance: A review of modelling techniques.
粘膜纤毛间隙:建模技术回顾。
  • DOI:
    10.1016/j.jbiomech.2019.109578
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Shayan M Vanaki;D. Holmes;S. Saha;Jinju Chen;Richard J. Brown;P. G. Jayathilake
  • 通讯作者:
    P. G. Jayathilake
Tailoring the interactions of heterostructured Nisub4/subN/Nisub3/subZnCsub0.7/sub for efficient COsub2/sub electroreduction
定制异质结构 Ni4N/Ni3ZnC0.7 的相互作用以实现高效二氧化碳电还原
  • DOI:
    10.1016/j.jechem.2022.07.037
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    14.900
  • 作者:
    Junjie Wang;Zhao Li;Zhaozhao Zhu;Jinxia Jiang;Yulan Li;Jinju Chen;Xiaobin Niu;Jun Song Chen;Rui Wu
  • 通讯作者:
    Rui Wu

Jinju Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinju Chen', 18)}}的其他基金

Biofilm Resistant Liquid-like Solid Surfaces in Flow Situations
流动情况下的生物膜抗液体状固体表面
  • 批准号:
    EP/V049615/2
  • 财政年份:
    2023
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Research Grant
Multiscale characterization of complex materials using a combination of atomic force microscopy and optical coherence tomography
结合原子力显微镜和光学相干断层扫描对复杂材料进行多尺度表征
  • 批准号:
    EP/R025606/1
  • 财政年份:
    2018
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Research Grant

相似海外基金

CCA's lineage heterogeneity and subsequent adaptive reprogramming upon acquired resistant to CDK4/6 inhibitor.
CCA 的谱系异质性以及随后获得对 CDK4/6 抑制剂耐药性后的适应性重编程。
  • 批准号:
    24K18491
  • 财政年份:
    2024
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
AMPQuest - Journeying to new horizons in treating drug-resistant infections.
AMPQuest - 迈向治疗耐药感染的新视野。
  • 批准号:
    BB/Y514019/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Research Grant
Indication selection, patient stratification, and IND preparation for STX-002: the first-in-class LRG1 inhibitor for treatment of chronic kidney disease and immunotherapy-resistant tumours.
STX-002的适应症选择、患者分层和IND准备:用于治疗慢性肾病和免疫治疗耐药肿瘤的一流LRG1抑制剂。
  • 批准号:
    10092585
  • 财政年份:
    2024
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Collaborative R&D
Creation of CAR-Tregs that are resistant to the senescent environment
创造抵抗衰老环境的 CAR-Tr​​eg
  • 批准号:
    BB/X009610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Research Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Research Grant
Role of Slc5a5 in the diagnosis and treatment of drug-resistant cancer
Slc5a5在耐药癌症诊断和治疗中的作用
  • 批准号:
    24K10435
  • 财政年份:
    2024
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Engineering gene regulatory networks to design disease-resistant crops
工程基因调控网络设计抗病作物
  • 批准号:
    BB/Y007786/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Research Grant
SBIR Phase I: Combating Multi-Drug Resistant Gram-negative Healthcare-Associated Infections
SBIR 第一阶段:对抗多重耐药革兰氏阴性医疗相关感染
  • 批准号:
    2310453
  • 财政年份:
    2024
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Standard Grant
A Novel Ruthenium Antimicrobial Platform Technology - Preventing and Treating Multi-Drug Resistant Infections
新型钌抗菌平台技术——预防和治疗多重耐药感染
  • 批准号:
    10050214
  • 财政年份:
    2023
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Grant for R&D
Mycoplasma genitalium: systematically studying the epidemiology of a neglected and increasingly drug-resistant sexually transmitted infection among people living with HIV in Manitoba
生殖支原体:系统研究曼尼托巴省艾滋病毒感染者中一种被忽视且耐药性日益增强的性传播感染的流行病学
  • 批准号:
    488761
  • 财政年份:
    2023
  • 资助金额:
    $ 58.29万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了