Responsive Manufacturing of High Value Thin to Thick Films.

高价值薄膜到厚膜的响应制造。

基本信息

  • 批准号:
    EP/V051261/1
  • 负责人:
  • 金额:
    $ 258.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Thin films with a high technical specification are used in many everyday devices, including displays, solar cells, electronic devices, batteries, and sensors. Printing of the high-value flexible electronic films with insulating, dielectric, semiconducting and conducting materials used in these devices makes a major and rapidly growing contribution to UK industry.The thickness of the films required, the starting materials used and the final high-value functions desired in the finished product vary significantly. However, the scientific principles that govern the behaviour of the printing processes for these diverse applications have many similarities, because they are all formed by selectively spreading a wet film of suspended solid particles and drying it. At present the optimisation of the printing parameters for these films is commonly achieved through a trial and error process rather than systematic intelligent control. Individual processes are being optimised in isolation without cross-fertilization of knowledge. In a fast changing world, where disruption to supply chains or development of improved materials can change the process input materials, the need to reconfigure the formulations/printing parameters used increases. Furthermore, desired outputs can also change rapidly as the manufacturers and customers seek to meet changing demands of their market for example requiring more precise control of film parameters such as thickness and electrical properties. Adjusting to such continually moving goal posts by relying on trial and error testing is time-consuming, wasteful and costly. The responsive manufacturing technology we propose to develop will have sufficient flexibility to overcome such problems by utilizing intelligent machine learning to control the printing parameters in real-time and therefore maintain an optimized printing process robustly in the face of variations in feedstock materials and/or the required output. It is surprising that there has been no major attempt to implement this approach to process control and optimisation for solution printed materials. This is despite process monitoring and feedback-based optimisation being proven enabling methods in other sectors such as additive manufacturing.This will be achieved by developing control algorithms for the printing process that take into account our theoretical understanding of the processes occurring and utilizing high-speed (minimized and proxy) in situ data acquisition to respond autonomously and continuously to perturbations in the feedstock materials or required film properties. We will make use of the wide range of laboratory scale processing systems our project team regularly use for the production of model colloidal films, ceramic dielectrics, photovoltaics and battery electrodes to provide the datasets required to educate the machine learning algorithms, test our theoretical understanding, develop models of the printing processes and to ultimately test the autonomous control system that we develop. Having proven the system works at a laboratory scale we plan to perform a series of demonstration runs at industrial scale in collaboration with project partners CPI who are world leading experts in production of printed electronics. This will provide the evidence needed to prove that this approach can work at an industrial scale in a highly demanding production environment (printed electronics require a high degree of control of the surface chemistry between subsequent layers to perform correctly and are typically made in cleanroom/glove-boxes within strict environmental tolerances). We envisage a future where a deep theoretical understanding of the processes that are taking place is utilised by artificial intelligence to continuously control and optimise the manufacture of 21st century high-value printed films autonomously using the minimum number of high-speed measurements to achieve the desired results.
具有高技术规格的薄膜用于许多日常设备,包括显示器,太阳能电池,电子设备,电池和传感器。在这些设备中使用绝缘、介电、半导体和导电材料的高价值柔性电子薄膜的印刷对英国工业做出了重要且快速增长的贡献。所需薄膜的厚度、所用的起始材料和成品中所需的最终高价值功能差异很大。然而,控制这些不同应用的印刷工艺行为的科学原理有许多相似之处,因为它们都是通过选择性地铺展悬浮固体颗粒的湿膜并干燥而形成的。目前,这些膜的印刷参数的优化通常通过试验和错误过程而不是系统的智能控制来实现。个别过程正在孤立地进行优化,而没有知识的交叉施肥。在快速变化的世界中,供应链的中断或改进材料的开发可能会改变工艺输入材料,因此需要重新配置所使用的配方/印刷参数。此外,随着制造商和客户寻求满足其市场的变化需求,例如需要更精确地控制膜参数(例如厚度和电性能),期望的输出也会迅速变化。依靠试错测试来适应这种不断变化的目标是耗时、浪费和昂贵的。我们建议开发的响应式制造技术将具有足够的灵活性,通过利用智能机器学习实时控制打印参数来克服这些问题,从而在原料材料和/或所需输出变化的情况下稳健地保持优化的打印过程。令人惊讶的是,一直没有重大尝试实施这种方法来控制和优化溶液印刷材料。尽管过程监控和基于反馈的优化已被证明是增材制造等其他领域的可行方法,但这将通过开发印刷过程的控制算法来实现,该算法考虑到我们对发生过程的理论理解,并利用高速(最小化和代理)原位数据采集,以自主地和连续地响应原料材料或所需膜性质的扰动。我们将利用我们的项目团队经常用于生产模型胶体膜、陶瓷膜、光化学和电池电极的各种实验室规模的处理系统,以提供教育机器学习算法所需的数据集,测试我们的理论理解,开发打印过程模型,并最终测试我们开发的自主控制系统。在实验室规模上证明了该系统的可行性后,我们计划与项目合作伙伴CPI(印刷电子生产领域的世界领先专家)合作,在工业规模上进行一系列演示运行。这将提供所需的证据来证明这种方法可以在高要求的生产环境中以工业规模工作(印刷电子产品需要对后续层之间的表面化学进行高度控制以正确执行,并且通常在严格的环境公差内在洁净室/手套箱中制造)。我们设想的未来是,人工智能利用对正在发生的过程的深刻理论理解,使用最少数量的高速测量来自动持续控制和优化21世纪世纪高价值印刷薄膜的制造,以达到预期的结果。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An introduction to perovskites for solar cells and their characterisation
  • DOI:
    10.1016/j.egyr.2022.08.205
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Suleiman Bello;Adam N. Urwick;F. Bastianini;A. Nedoma;Alan Dunbar
  • 通讯作者:
    Suleiman Bello;Adam N. Urwick;F. Bastianini;A. Nedoma;Alan Dunbar
The coagulant dipping process of nitrile latex: investigations of former motion effects and coagulant loss into the dipping compound.
丁腈乳胶的凝固剂浸渍过程:研究浸渍剂中的运动效果和凝固剂损失。
  • DOI:
    10.1039/d2sm01201d
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Groves R
  • 通讯作者:
    Groves R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Howse其他文献

Autonomous propulsion
自主推进
  • DOI:
    10.1038/nchem.1318
  • 发表时间:
    2012-03-22
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    Jonathan Howse
  • 通讯作者:
    Jonathan Howse

Jonathan Howse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Howse', 18)}}的其他基金

Kinetic Switches: Exploiting Feedback in Enzyme Microparticles
动力学开关:利用酶微粒中的反馈
  • 批准号:
    EP/K03037X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Research Grant
Towards Intelligent Autonomous Nanoswimmers.
迈向智能自主纳米游泳者。
  • 批准号:
    EP/G04077X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Research Grant

相似海外基金

Pathways for Servitization of Manufacturing in B2C Transactions and Factors Increase Value in Use for Consumers
B2C 交易中制造业服务化的途径和因素增加了消费者的使用价值
  • 批准号:
    23K12574
  • 财政年份:
    2023
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Edge AI for Predictive Maintenance in High Value Manufacturing
用于高价值制造中预测性维护的边缘人工智能
  • 批准号:
    10075464
  • 财政年份:
    2023
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Grant for R&D
"Circular Transparency Platform", unifying the apparel value chain: From Thread to Second Life+. Enabling stakeholders from manufacturing and retail, to engage consumers with visual, incentivised Environmental, Social and Circular product experiences
“循环透明平台”,统一服装价值链:从Thread到Second Life。
  • 批准号:
    10059608
  • 财政年份:
    2023
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Collaborative R&D
HIGH VALUE MANUFACTURING CATAPULT CORE DELIVERY PROGRAMME
高价值制造弹射器核心交付计划
  • 批准号:
    160109
  • 财政年份:
    2023
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Centres
Isoporous Organic Solvent Nanofitration Membranes to Enable High Value Manufacturing for Life Sciences (iOSN)
等孔有机溶剂纳滤膜可实现生命科学的高价值制造 (iOSN)
  • 批准号:
    MR/W009382/1
  • 财政年份:
    2022
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Fellowship
Self-learning universal AI to improve productivity in high-value metal additive manufacturing
自学习通用人工智能可提高高价值金属增材制造的生产力
  • 批准号:
    10034449
  • 财政年份:
    2022
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Collaborative R&D
Engineered enzymes, metabolic pathways and bioproduction systems for high-value chemicals manufacturing.
用于高价值化学品制造的工程酶、代谢途径和生物生产系统。
  • 批准号:
    2827599
  • 财政年份:
    2022
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Studentship
Responsive Manufacturing: Maximising Value Through Life
响应式制造:一生价值最大化
  • 批准号:
    EP/V05127X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Research Grant
Recycling Technologies: A sustainable manufacturing platform for the chemical recycling of mixed plastic waste into high value products
回收技术:将混合塑料废物化学回收成高价值产品的可持续制造平台
  • 批准号:
    81424
  • 财政年份:
    2020
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Small Business Research Initiative
Doing More With Less: A Digital Twin of state-of-the-art and emerging high value manufacturing routes for high integrity titanium alloy components
事半功倍:用于高完整性钛合金部件的最先进和新兴高价值制造路线的数字孪生
  • 批准号:
    EP/T024992/1
  • 财政年份:
    2020
  • 资助金额:
    $ 258.15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了