EPSRC-SFI: Table Top Manufacturing of Tailored Silica for Personalised Medicine [SiPM]
EPSRC-SFI:用于个性化医疗的定制二氧化硅的桌面制造 [SiPM]
基本信息
- 批准号:EP/V051458/1
- 负责人:
- 金额:$ 82.79万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Personalised medicine (PM) is gaining significant attention in recent years as it has the potential to transform healthcare across the globe by moving away from the "one-size-fits-all" model to utilise personal circumstances, medical history and needs to deliver individually suitable treatment. Current bulk manufacturing technologies are unable to meet most of these demands as they are slow in responding to changes, capital intensive, use unsustainable methods and are not flexible to meet PM needs. A recent white paper from the EPSRC funded Redistributed Manufacturing in Healthcare has identified that small-scale, localised, high-speed and automated manufacturing platforms are urgently needed to realise PM. They identified that such "factory-in-a-box" should be: - able to manufacture on-demand,- flexible to deliver multiple products with desired properties, - sustainable (energy efficient and using mild conditions) and - able to integrate various unit operations using data science tools. Given the future needs for PM, recent research efforts have been directed towards redefining the manufacturing of active pharmaceutical ingredient (API) and their formulations into e.g. tablets for oral dosages using advanced methods such as microfluidics, Hot Melt Extrusion or 3D printing. However, as a medicine is a carefully designed formulation of an API with non-active components such as excipients or drug delivery systems (DDS), challenges in manufacturing of the non-active components for PM are also equally important, but have not been addressed. The non-active components improve physicochemical properties and bioavailability of APIs. In its many forms silica is one of the most commonly used component of many current and future API formulations, yet their manufacturing to meet the PM requirements do not exist. Specifically, despite tremendous progress made on the use of silica in pharmaceutical formulations, currently, their on-demand, automated and flexible manufacture to produce silica of desired properties for PM is non-existent. A key reason for this is that the vast majority of promising silicas require synthesis conditions that are prohibitive for any meaningful scale-up and for implementation in a 'factory in a box' platform. Hence, this missing piece, despite the recent developments in manufacturing of API and formulations, creates a significant barrier to making PM a reality. We have shown the potential of bioinspired silica (BIS) as an alternate drug delivery system, which is scalable, economical and sustainable - an ideal candidate for on-demand and flexible manufacturing. This research will rely on a close synergy between computational modelling and experimental synthesis. Green synthesis processes and research on intensified reactors by the applicants will be used as a starting point. A range of intensified reactors and Gaussian Process-based modelling will be used to achieve process intensification of particulate manufacturing processes. Comprehensive models will be used to create digital twins of fluidic devices and recipes of green synthesis of silica particles using those devices. Machine learning approaches based on results of simulations of reactors will be developed to relate quality attributes of silica produced with key process and operating parameters. Device geometry and process parameters will be manipulated to achieve the desired Critical Quality Attributes (CQAs). The work will contribute to revolutionising PM and help deliver table top pharmaceutical manufacturing equipment in hospitals and pharmacies. Ultimately, the impact will include significant improvements in treatments and quality of life as well as the formation of new companies to build such units.
近年来,个性化医疗(PM)受到了极大的关注,因为它有可能改变地球仪的医疗保健,摆脱“一刀切”的模式,利用个人情况,病史和需求提供个性化的治疗。目前的批量制造技术无法满足这些需求中的大多数,因为它们对变化的反应缓慢,资本密集,使用不可持续的方法,并且不能灵活地满足PM需求。EPSRC资助的医疗保健再分配制造最近的一份白色论文指出,迫切需要小规模、本地化、高速和自动化的制造平台来实现PM。他们确定这种“盒子里的工厂”应该:-能够按需制造,-灵活地提供具有所需特性的多种产品,-可持续(节能和使用温和的条件),以及-能够使用数据科学工具集成各种单元操作。 考虑到未来对PM的需求,最近的研究努力已经指向使用先进的方法如微流体、热熔挤出或3D打印将活性药物成分(API)及其制剂重新定义为例如用于口服剂量的片剂的制造。然而,由于药物是API与非活性组分(如赋形剂或药物递送系统(DDS))的精心设计的制剂,因此制造PM的非活性组分的挑战也同样重要,但尚未得到解决。非活性成分改善了原料药的理化性质和生物利用度。在其许多形式中,二氧化硅是许多当前和未来的API配方中最常用的组分之一,但它们的制造不存在以满足PM要求。具体而言,尽管在药物制剂中使用二氧化硅方面取得了巨大进展,但目前,它们的按需、自动化和灵活的制造以生产具有PM所需性质的二氧化硅是不存在的。一个关键原因是,绝大多数有前途的二氧化硅需要的合成条件是禁止任何有意义的规模扩大和实施在一个“工厂在一个盒子”的平台。因此,尽管最近在API和制剂的生产方面取得了进展,但这一缺失部分仍然是实现PM的重大障碍。我们已经展示了生物启发二氧化硅(BIS)作为替代药物递送系统的潜力,该系统具有可扩展性,经济性和可持续性-是按需和灵活制造的理想候选者。这项研究将依赖于计算建模和实验合成之间的密切协同作用。申请人的绿色合成工艺和对强化反应器的研究将被用作起点。一系列强化反应器和基于高斯过程的建模将用于实现颗粒制造过程的过程强化。综合模型将用于创建数字孪生的流体设备和配方的绿色合成二氧化硅颗粒使用这些设备。将开发基于反应器模拟结果的机器学习方法,以将生产的二氧化硅的质量属性与关键工艺和操作参数相关联。将对器械几何结构和过程参数进行操作,以实现预期的关键质量属性(CQA)。这项工作将有助于革新PM,并帮助医院和药店提供桌面制药设备。最终,其影响将包括治疗和生活质量的显著改善,以及组建新公司来建造这些单位。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Comparison of Environmental Impact of Various Silicas Using a Green Chemistry Evaluator.
- DOI:10.1021/acssuschemeng.2c00519
- 发表时间:2022-04-25
- 期刊:
- 影响因子:8.4
- 作者:Brambila, Carlos;Boyd, Peter;Keegan, Amber;Sharma, Pankaj;Vetter, Caleb;Ponnusamy, Ettigounder;Patwardhan, Siddharth, V
- 通讯作者:Patwardhan, Siddharth, V
Unlocking the holy grail of sustainable and scalable mesoporous silica using computational modelling
使用计算模型解锁可持续且可扩展的介孔二氧化硅的圣杯
- DOI:10.1039/d3su00019b
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Stavert T
- 通讯作者:Stavert T
Multi-criteria discovery, design and manufacturing to realise nanomaterial potential
多标准发现、设计和制造以实现纳米材料的潜力
- DOI:10.1038/s44172-023-00128-6
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pilling R
- 通讯作者:Pilling R
Technical note: Statistical generation of climate-perturbed flow duration curves
技术说明:气候扰动流量持续时间曲线的统计生成
- DOI:10.5194/hess-27-2499-2023
- 发表时间:2023
- 期刊:
- 影响因子:6.3
- 作者:Yildiz V
- 通讯作者:Yildiz V
Quality-by-Design Approach to Process Intensification of Bioinspired Silica Synthesis
- DOI:10.1021/acssuschemeng.3c07624
- 发表时间:2024-03-08
- 期刊:
- 影响因子:8.4
- 作者:Manning,Joseph R. H.;Brambila,Carlos;Patwardhan,Siddharth V.
- 通讯作者:Patwardhan,Siddharth V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddharth Patwardhan其他文献
Acquiring paraphrases from text corpora
从文本语料库中获取释义
- DOI:
10.1145/1597735.1597764 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Rahul Bhagat;E. Hovy;Siddharth Patwardhan - 通讯作者:
Siddharth Patwardhan
Incorporating Dictionary and Corpus Information into a Context Vector Measure of Semantic Relatednes
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Siddharth Patwardhan - 通讯作者:
Siddharth Patwardhan
Fact-based question decomposition for candidate answer re-ranking
基于事实的问题分解,用于候选答案重新排序
- DOI:
10.1145/2063576.2063886 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Aditya Kalyanpur;Siddharth Patwardhan;B. Boguraev;Adam Lally;Jennifer Chu - 通讯作者:
Jennifer Chu
An empirical analysis of word error rate and keyword error rate
误词率和关键词错误率实证分析
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Youngja Park;Siddharth Patwardhan;Karthik Venkat Ramanan;Stephen C. Gates - 通讯作者:
Stephen C. Gates
Measures of Semantic Similarity and Relatedness in the Medical Domain
医学领域语义相似性和相关性的测量
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Ted Pedersen;Serguei V. S. Pakhomov;Siddharth Patwardhan - 通讯作者:
Siddharth Patwardhan
Siddharth Patwardhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddharth Patwardhan', 18)}}的其他基金
Understanding the role of mesoporous Silicon in sustainable energy applications
了解介孔硅在可持续能源应用中的作用
- 批准号:
NE/V02129X/1 - 财政年份:2021
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
Bioinspired green manufacturing of next generation energy storage materials
下一代储能材料的仿生绿色制造
- 批准号:
EP/R041822/1 - 财政年份:2018
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
Design and green manufacturing of functional nanomaterials
功能纳米材料设计与绿色制造
- 批准号:
EP/R025983/1 - 财政年份:2018
- 资助金额:
$ 82.79万 - 项目类别:
Fellowship
Enabling manufacturing of Functional Nanomaterials using SynBio
使用 SynBio 制造功能性纳米材料
- 批准号:
EP/P006892/1 - 财政年份:2016
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
相似国自然基金
致病疫霉RxLR效应蛋白SFI7抑制马铃薯ETI免疫反应的分子机制研究
- 批准号:31800134
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
马铃薯致病疫霉RXLR效应蛋白SFI5在抑制番茄MTI早期反应中分子机制的研究
- 批准号:31701862
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
黔北农村留守学龄儿童意外伤害特征及SFI干预模式研究
- 批准号:81160350
- 批准年份:2011
- 资助金额:53.0 万元
- 项目类别:地区科学基金项目
Sfi1p蛋白在面包酵母SPB复制及SPB相关细胞过程中的作用研究
- 批准号:30771108
- 批准年份:2007
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
- 批准号:
EP/X036901/1 - 财政年份:2024
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线
- 批准号:
EP/X039757/1 - 财政年份:2023
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
EPSRC-SFI: "CFT and Gravity: Heavy States and Black Holes"
EPSRC-SFI:“CFT 和重力:重态和黑洞”
- 批准号:
EP/W019663/1 - 财政年份:2023
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
EPSRC & SFI CDT in Sustainable Chemistry - Year 1
电力系统研究委员会
- 批准号:
2888667 - 财政年份:2023
- 资助金额:
$ 82.79万 - 项目类别:
Studentship
EPSRC & SFI CDT in Sustainable Chemistry - Year 1
电力系统研究委员会
- 批准号:
2888844 - 财政年份:2023
- 资助金额:
$ 82.79万 - 项目类别:
Studentship
EPSRC-SFI: Krylov subspace methods for non-symmetric PDE problems: a deeper understanding and faster convergence
EPSRC-SFI:非对称 PDE 问题的 Krylov 子空间方法:更深入的理解和更快的收敛
- 批准号:
EP/W035561/1 - 财政年份:2023
- 资助金额:
$ 82.79万 - 项目类别:
Research Grant
EPSRC & SFI CDT in Sustainable Chemistry - Year 1
电力系统研究委员会
- 批准号:
2888671 - 财政年份:2023
- 资助金额:
$ 82.79万 - 项目类别:
Studentship