The use of Symmetric Projection Attractor Reconstruction (SPAR) as a novel assessment tool in Asthma
使用对称投影吸引子重建 (SPAR) 作为哮喘的新型评估工具
基本信息
- 批准号:EP/W00240X/1
- 负责人:
- 金额:$ 63.29万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimal asthma care relies on accurate and detailed assessment of the patient's clinical condition. A cornerstone of assessment is pulmonary function testing. Such testing frequently involves measuring airflow at the mouth during maximal breathing efforts. Although widely employed, such measurements are relatively insensitive and often relate poorly to overall disease severity. Lack of sensitivity leads to difficulty diagnosing early lung disease or early intervention following deterioration, which may ultimately affect prognosis. Existing techniques can also be challenging to perform by patients resulting in inaccurate or difficult to interpret measures and potential misdiagnosis.Symmetric Projection Attractor Reconstruction (SPAR) is a novel analysis tool to quantify morphology changes from physiological waveforms such as respiratory flow and transforms high-fidelity waveform data into a simpler, quantifiable image (termed an attractor). Small changes in the respiratory flow waveform shape and variability reflecting the impact of changes in lung mechanics that occur in asthma are picked up as bigger changes in the attractor. This means that pathophysiological changes which may be missed with conventional testing (eg simple metrics used in PFT) can be quantified, making better use of all the available data. This could lead to more sensitive identification of pathological change and/or deterioration. As the system tracks through time series waveform data, overlapping attractors are formed, allowing us to map physiological changes over time. Small changes in the waveform's morphology and variability, will result in specific changes in the attractor's shape and colour, respectively. Every attractor bears a unique relationship with the input waveform data that created it. Therefore, different attractor morphology and variability features exist for different types of waveform which reflect the underlying phenotype.The aim of the proposed study is to show proof of concept for SPAR analysis as a clinical decision support tool in patients with asthma. This is a detailed, observational clinical physiological study with the aim of assessing the use of SPAR in determining asthma severity and response to induced change in airway calibre. Respiratory flow waveforms be recorded in a large cohort of healthy subjects (n=81) and asthmatic patients across a range disease severities (n=152, n=76 mild, n=76 moderate/severe) and under conditions of reduced or increased airway calibre. Initial healthy subject data will be processed through pilot study derived respiratory waveform SPAR coding to generate corresponding, time dependent attactors. This will enable key SPAR features to be identified and in silico modelling to associate SPAR features with physiological meaning. As healthy subject and patient data are collected, specific respiratory coding will be developed to quantify specific respiratory features and machine learning algorithms developed, optimised and tested to classify different disease phenotypes and the response to brochoconstriction and bronchodilation, reflecting acute change in disease control.The most significant outcome of this project will be a new approach for diagnosis and monitoring of asthma which has the potential of realising an appreciable improvement in quality of life for a significant proportion of the population. The study involves a multidisciplinary research group of biomedical scientists, clinicians and mathematicians thus avoiding potentially outdated technologies or suboptimal implementation of novel approaches. SPAR has the potential to be a diagnostic tool in patients with asthma, particularly in difficult to assess groups such as children, as measures are derived from resting tidal breathing and do not involve specific respiratory manoeuvres as well as an individualised monitoring/alert tool allowing early intervention at the onset of deterioration, thereby improving outcomes.
最佳的哮喘护理依赖于对患者临床状况的准确和详细的评估。评估的基石是肺功能测试。这种测试通常涉及在最大呼吸努力期间测量口腔处的气流。虽然被广泛使用,但这种测量相对不敏感,并且通常与整体疾病严重程度关系不佳。缺乏敏感性导致难以诊断早期肺部疾病或在恶化后进行早期干预,这可能最终影响预后。现有的技术也可能是具有挑战性的,由患者导致不准确或难以解释的措施和潜在的误诊。对称投影吸引子重建(SPAR)是一种新颖的分析工具,以量化的形态变化的生理波形,如呼吸流量和转换高保真波形数据到一个更简单的,可量化的图像(称为吸引子)。反映哮喘中发生的肺力学变化的影响的呼吸流波形形状和可变性的小变化被拾取为吸引子中的较大变化。这意味着可以量化常规测试(例如PFT中使用的简单指标)可能遗漏的病理生理变化,从而更好地利用所有可用数据。这可能导致更灵敏地识别病理变化和/或恶化。当系统跟踪时间序列波形数据时,会形成重叠的吸引子,使我们能够绘制随时间的生理变化。波形形态和可变性的微小变化将分别导致吸引子形状和颜色的特定变化。每个吸引子都与创建它的输入波形数据有着独特的关系,因此,不同类型的波形存在不同的吸引子形态和变异性特征,反映了潜在的表型,该研究的目的是证明SPAR分析作为哮喘患者临床决策支持工具的概念。这是一项详细的观察性临床生理学研究,目的是评估SPAR在确定哮喘严重程度和对诱导的气道口径变化的反应中的应用。在一个健康受试者(n=81)和哮喘患者的大队列中记录呼吸流量波形,这些患者的疾病严重程度范围(n=152,n=76轻度,n=76中度/重度),并且在气道口径减小或增加的条件下。初始健康受试者数据将通过初步研究衍生的呼吸波形SPAR编码进行处理,以生成相应的时间依赖性attactors。这将使关键的SPAR功能被识别,并在计算机模拟中将SPAR功能与生理意义相关联。随着健康受试者和患者数据的收集,将开发特定的呼吸编码以量化特定的呼吸特征,并开发、优化和测试机器学习算法以分类不同的疾病表型以及对支气管收缩和支气管扩张的反应,反映了疾病控制的急剧变化。该项目最重要的成果将是一种诊断和监测哮喘的新方法,有可能显著改善相当一部分人口的生活质量。该研究涉及生物医学科学家,临床医生和数学家的多学科研究小组,从而避免潜在的过时技术或新方法的次优实施。SPAR有可能成为哮喘患者的诊断工具,特别是在儿童等难以评估的人群中,因为测量来自静息潮气呼吸,不涉及特定的呼吸动作,以及个性化的监测/警报工具,允许在恶化开始时进行早期干预,从而改善结局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerrard Rafferty其他文献
Gerrard Rafferty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 63.29万 - 项目类别:
Continuing Grant
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
- 批准号:
24K20733 - 财政年份:2024
- 资助金额:
$ 63.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Symmetric representation and the categorification of cluster structure on non-orientable surfaces
不可定向表面簇结构的对称表示和分类
- 批准号:
24K06666 - 财政年份:2024
- 资助金额:
$ 63.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 63.29万 - 项目类别:
Continuing Grant
Distributed Symmetric Key Exchange (DSKE) Network
分布式对称密钥交换 (DSKE) 网络
- 批准号:
10077122 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Collaborative R&D
RUI: Extended Metal Atom Chain Complexes of Fe and Co Supported by a C3 Symmetric, Scaffolded Ligand Platform
RUI:C3 对称支架配体平台支持的 Fe 和 Co 的延伸金属原子链配合物
- 批准号:
2245569 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Standard Grant
Collaborative Research: An Optimal Algorithm for Orthogonal Eigenvectors of Symmetric Tridiagonals
协作研究:对称三对角线正交特征向量的最优算法
- 批准号:
2309596 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Standard Grant
CAREER: Theoretical and Numerical Investigation of Symmetric Mass Generation
职业:对称质量生成的理论和数值研究
- 批准号:
2238360 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Continuing Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 63.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows