Securing the Next Billion Consumer Devices on the Edge

确保边缘的下一个十亿消费设备的安全

基本信息

  • 批准号:
    EP/W005271/1
  • 负责人:
  • 金额:
    $ 163.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Vision: In this fellowship, I aim to address a major challenge in the adoption of user-centred privacy-enhancing technologies: Can we leverage novel architectures to provide private, trusted, personalised, and dynamically- configurable models on consumer devices to cater for heterogenous environments and user requirements? Importantly, such properties must provide assurances for the data integrity and model authenticity/trustworthiness, while respecting the privacy of the individuals taking part in training and improving such models. Innovation and adoption in this space require collaborations between device manufacturers, platform providers, network operators, regulators, and the users. The objectives of this fellowship will take us far beyond the status-quo, one-size-fits-all solutions, providing a framework for personalised, trustworthy, and confidential edge computing, with ability to respect dynamic policies, in particular when dealing with sensitive models and data from the consumer Internet of Things (IoT) devices.In this fellowship, I aim to address these challenges by designing and evaluating an ecosystem where analytics from, and interaction with, consumer IoT devices can happen with trust in the model and authenticity, while enabling auditing and personalisation, hence pushing today's boundaries on all-or-nothing privacy and enabling new economic models. This approach requires designing for capabilities beyond the current trusted memory and processing limitations of the devices, and a cooperative dialogue and ecosystem involving service providers, ISPs, regulators, device manufacturers, and the end users. By designing our framework around the latest architectural and security features in edge devices, before they become commercially available, we provision for Model Privacy and a User-Centred IoT ecosystem, where service providers can have trust in the authenticity, attestability, and trustworthiness of the valuable models running on user devices, without the users having to reveal sensitive personal information to these cloud-based centralised systems. This approach will enable advanced and sensitive edge-based analytics to be performed, without jeopardising the individuals' privacy. Importantly, we aim to integrate mechanisms for data authenticity and attestation into our proposed framework, to enable trust in models and the data used by them. Such privacy-preserving technologies have the capacity to enable new form of sensitive analytics, without sharing raw data and thereby providing legal balancing capabilities that might enable certain sensitive (or currently unlawful) data analysis.
愿景:在这次团契中,我的目标是解决采用以用户为中心的隐私增强技术的一个主要挑战:我们能否利用新颖的架构在消费设备上提供私人、可信、个性化和动态可配置的模型,以满足不同的环境和用户需求?重要的是,此类属性必须为数据完整性和模型真实性/可信性提供保证,同时尊重参与培训和改进此类模型的个人的隐私。这一领域的创新和采用需要设备制造商、平台提供商、网络运营商、监管机构和用户之间的合作。该奖学金的目标将使我们远远超越现状、一刀切的解决方案,为个性化、值得信赖和保密的边缘计算提供一个框架,并能够尊重动态策略,特别是在处理消费者物联网(IoT)设备的敏感模型和数据时。在此奖学金中,我的目标是通过设计和评估一个生态系统来应对这些挑战,在该生态系统中,来自消费者物联网设备的分析和与消费者物联网设备的交互可以在信任模型和真实性的情况下发生,同时启用审计和个性化,从而推动当今全有或全无隐私的界限,并支持新的经济模式。这种方法需要设计超越设备当前受信任的内存和处理限制的功能,以及服务提供商、互联网服务提供商、监管机构、设备制造商和最终用户之间的合作对话和生态系统。通过围绕边缘设备的最新架构和安全功能设计我们的框架,在边缘设备商业化之前,我们提供了模型隐私和以用户为中心的物联网生态系统,其中服务提供商可以信任在用户设备上运行的宝贵模型的真实性、可证明性和可信赖性,而用户不必向这些基于云的集中式系统泄露敏感的个人信息。这种方法将能够执行先进和敏感的基于边缘的分析,而不会危及个人隐私。重要的是,我们的目标是将数据真实性和证明机制集成到我们提出的框架中,以支持对模型及其使用的数据的信任。这种保护隐私的技术能够在不共享原始数据的情况下实现新形式的敏感分析,从而提供可能实现某些敏感(或当前非法)数据分析的法律平衡能力。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Information Theory Inspired Pattern Analysis for Time-series Data
  • DOI:
    10.48550/arxiv.2302.11654
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yushan Huang;Yuchen Zhao;Alexander Capstick;Francesca Palermo;Hamed Haddadi;P. Barnaghi
  • 通讯作者:
    Yushan Huang;Yuchen Zhao;Alexander Capstick;Francesca Palermo;Hamed Haddadi;P. Barnaghi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hamed Haddadi其他文献

FIB: A Method for Evaluation of Feature Impact Balance in Multi-Dimensional Data
FIB:一种多维数据中特征影响平衡评估方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xavier F. Cadet;S. Ahmadi;Hamed Haddadi
  • 通讯作者:
    Hamed Haddadi
Private and Scalable Personal Data Analytics using a Hybrid Edge-Cloud Deep Learning
使用混合边缘云深度学习进行私有且可扩展的个人数据分析
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seyed Ali Osia;A. Shamsabadi;A. Taheri;Hamid R. Rabiee;Hamed Haddadi
  • 通讯作者:
    Hamed Haddadi
accountability into the Internet of Things: the IoT Databox model. Journal of Reliable Intelligent Environments
物联网的责任:物联网数据盒模型。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andy Crabtree;Tom Colley;Chris Glover;Wang Liang;Jianxin Brown;Anthony Lachlan McAuley;Tom Lodge;James A. Colley;Christopher Greenhalgh;Kevin Glover;Hamed Haddadi;Yousef Amar;R. Mortier;Qi Li;John Moore;Liang Wang;Poonam Yadav;Jianxin R. Zhao;Anthony Brown;Lachlan D. Urquhart;Derek McAuley
  • 通讯作者:
    Derek McAuley
Effective Abnormal Activity Detection on Multivariate Time Series Healthcare Data
对多元时间序列医疗数据进行有效的异常活动检测
Mitigating Hallucinations in Large Language Models via Self-Refinement-Enhanced Knowledge Retrieval
通过自我完善增强的知识检索来减轻大型语言模型中的幻觉
  • DOI:
    10.48550/arxiv.2405.06545
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengjia Niu;Hao Li;Jie Shi;Hamed Haddadi;Fan Mo
  • 通讯作者:
    Fan Mo

Hamed Haddadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hamed Haddadi', 18)}}的其他基金

GNNs for Network Security (and Privacy) GRAPHS4SEC
用于网络安全(和隐私)的 GNN GRAPHS4SEC
  • 批准号:
    EP/Y036050/1
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Research Grant
Databox: Privacy-Aware Infrastructure for Managing Personal Data
Databox:用于管理个人数据的隐私感知基础设施
  • 批准号:
    EP/N028260/2
  • 财政年份:
    2017
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Research Grant
Databox: Privacy-Aware Infrastructure for Managing Personal Data
Databox:用于管理个人数据的隐私感知基础设施
  • 批准号:
    EP/N028260/1
  • 财政年份:
    2016
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Research Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
  • 批准号:
    10092859
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    EU-Funded
Next-generation KYC banking verification via embedded smart keyboard
通过嵌入式智能键盘进行下一代 KYC 银行验证
  • 批准号:
    10100109
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Collaborative R&D
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    EU-Funded
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
  • 批准号:
    DP240101322
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Discovery Projects
PhD in the Next Generation of Organic LEDs
下一代有机 LED 博士
  • 批准号:
    2904651
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Studentship
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
  • 批准号:
    EP/Y028287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Fellowship
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Research Grant
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
  • 批准号:
    MR/Y019601/1
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Fellowship
AI-PigNet: The AI of social interactions for next gen smart animal breeding
AI-PigNet:下一代智能动物饲养的社交互动人工智能
  • 批准号:
    BB/Y513891/1
  • 财政年份:
    2024
  • 资助金额:
    $ 163.49万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了