GNNs for Network Security (and Privacy) GRAPHS4SEC
用于网络安全(和隐私)的 GNN GRAPHS4SEC
基本信息
- 批准号:EP/Y036050/1
- 负责人:
- 金额:$ 41.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The application of Artificial Intelligence (AI) and Machine Learning (ML) to network security (AI4SEC) is paramount against cybercrime. While AI/ML is mainstream in domains such as computer vision and natural language processing, traditional AI/ML has produced below-par results in AI4SEC. Solutions do not properly generalize, are ineffective in real deployments, and are vulnerable to adversarial attacks. A fundamental limitation is the lack of AI/ML technology specific to network security.Due to their unique ability to learn and generalize over graph-structured information, graph- learning approaches, and in particular Graph Neural Networks (GNNs), have recently enabled groundbreaking applications in multiple fields where data are generally represented as graphs. Network security data are intrinsically relational, and initial research suggests that graph- structured representations and GNNs have the potential to become foundational to AI4SEC, in the way convolutional and recursive networks were to computer vision and natural language processing.The goal of GRAPHS4SEC is to leverage graph data representations and modern GNN technology to conceive a new breed of robust GNN-based network security methods which could radically advance the AI4SEC practice. The objectives of GRAPHS4SEC are: (a) to investigate algorithmic methods that facilitate modeling and learning from graph-based network security data; (b) to compare the benefits and overheads of GNN-based AI4SEC to traditional AI/ML in terms of detection performance, generalization, scalability, and robustness against adversarial attacks; (c) to showcase the benefits and improvements of GRAPHS4SEC technology in four critical, real-world network security applications with significant impact for society, considering (in particular) the detection and early mitigation of phishing and fake/malicious websites, a threat among the most popular and society-wide harmful in today's Internet.
人工智能(AI)和机器学习(ML)在网络安全性(AI4SEC)中的应用至关重要。尽管AI/ML在计算机视觉和自然语言处理等领域是主流,但传统的AI/ML在AI4SEC中产生了低于标准的结果。解决方案没有正确地概括,在实际部署中无效,并且容易受到对抗性攻击的影响。一个基本限制是缺乏针对网络安全性的AI/ML技术。其独特的学习能力,超过了图形结构的信息,图形学习方法,尤其是图形神经网络(GNN),最近在多个领域中启用了数据,这些领域通常以数据表示为图形。网络安全数据在本质上是关系的,并且初步研究表明,图形结构化表示和GNN有可能成为AI4SEC的基础,以卷积和递归网络的方式进行计算机视觉和自然语言处理。 Graphs4sec的目标是:(a)研究算法方法,以促进基于图形的网络安全数据进行建模和学习; (b)将基于GNN的AI4SEC与传统AI/ML的好处和间接开销,以检测性能,概括,可扩展性和鲁棒性针对对抗性攻击; (c)在四个关键的,现实的网络安全应用程序中展示Graphs4sec技术的好处和改进,对社会产生了重大影响,考虑(尤其是)(尤其是)检测和早期缓解网络钓鱼和假/恶意网站,这是当今互联网上最受欢迎和最受欢迎的有害的威胁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hamed Haddadi其他文献
FIB: A Method for Evaluation of Feature Impact Balance in Multi-Dimensional Data
FIB:一种多维数据中特征影响平衡评估方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xavier F. Cadet;S. Ahmadi;Hamed Haddadi - 通讯作者:
Hamed Haddadi
Private and Scalable Personal Data Analytics using a Hybrid Edge-Cloud Deep Learning
使用混合边缘云深度学习进行私有且可扩展的个人数据分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Seyed Ali Osia;A. Shamsabadi;A. Taheri;Hamid R. Rabiee;Hamed Haddadi - 通讯作者:
Hamed Haddadi
Mitigating Hallucinations in Large Language Models via Self-Refinement-Enhanced Knowledge Retrieval
通过自我完善增强的知识检索来减轻大型语言模型中的幻觉
- DOI:
10.48550/arxiv.2405.06545 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mengjia Niu;Hao Li;Jie Shi;Hamed Haddadi;Fan Mo - 通讯作者:
Fan Mo
accountability into the Internet of Things: the IoT Databox model. Journal of Reliable Intelligent Environments
物联网的责任:物联网数据盒模型。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Andy Crabtree;Tom Colley;Chris Glover;Wang Liang;Jianxin Brown;Anthony Lachlan McAuley;Tom Lodge;James A. Colley;Christopher Greenhalgh;Kevin Glover;Hamed Haddadi;Yousef Amar;R. Mortier;Qi Li;John Moore;Liang Wang;Poonam Yadav;Jianxin R. Zhao;Anthony Brown;Lachlan D. Urquhart;Derek McAuley - 通讯作者:
Derek McAuley
Effective Abnormal Activity Detection on Multivariate Time Series Healthcare Data
对多元时间序列医疗数据进行有效的异常活动检测
- DOI:
10.1145/3570361.3615741 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mengjia Niu;Yuchen Zhao;Hamed Haddadi - 通讯作者:
Hamed Haddadi
Hamed Haddadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hamed Haddadi', 18)}}的其他基金
Securing the Next Billion Consumer Devices on the Edge
确保边缘的下一个十亿消费设备的安全
- 批准号:
EP/W005271/1 - 财政年份:2022
- 资助金额:
$ 41.57万 - 项目类别:
Fellowship
Databox: Privacy-Aware Infrastructure for Managing Personal Data
Databox:用于管理个人数据的隐私感知基础设施
- 批准号:
EP/N028260/2 - 财政年份:2017
- 资助金额:
$ 41.57万 - 项目类别:
Research Grant
Databox: Privacy-Aware Infrastructure for Managing Personal Data
Databox:用于管理个人数据的隐私感知基础设施
- 批准号:
EP/N028260/1 - 财政年份:2016
- 资助金额:
$ 41.57万 - 项目类别:
Research Grant
相似国自然基金
数据注入攻击下非线性网络化系统分布式安全控制与性能优化
- 批准号:62303125
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于智能Sketch的网络安全分析研究
- 批准号:62302352
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
车载CAN总线网络安全防御关键技术研究
- 批准号:62302469
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
隐私保护下网络化系统的分布式智能监测与安全控制
- 批准号:62303353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于复杂图神经网络高效安全智慧出行问题研究
- 批准号:62306164
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
- 批准号:
2338069 - 财政年份:2024
- 资助金额:
$ 41.57万 - 项目类别:
Continuing Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 41.57万 - 项目类别:
Standard Grant
Conference: Workshop on LLM for Network Security
会议:网络安全法学硕士研讨会
- 批准号:
2409560 - 财政年份:2024
- 资助金额:
$ 41.57万 - 项目类别:
Standard Grant
Conference: Network and Distributed System Security Symposium (NDSS) 2023
会议:网络与分布式系统安全研讨会 (NDSS) 2023
- 批准号:
2318109 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
- 批准号:
2316720 - 财政年份:2023
- 资助金额:
$ 41.57万 - 项目类别:
Standard Grant