Ultra-fast three and four-electron dynamics in intense electro-magnetic laser fields
强电磁激光场中的超快三电子和四电子动力学
基本信息
- 批准号:EP/W005352/1
- 负责人:
- 金额:$ 54.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ultra-short and ultra-intense laser pulses provide an impressive camera into the world of electron motion. Attoseconds and sub-femtoseconds are the natural time scale of multi-electron dynamics during the ionization and break-up of atoms and molecules. The overall aim of the proposed work is to investigate attosecond phenomena, pathways of correlated electron dynamics and effects due to the magnetic field of light in three and four-electron ionization in atoms and molecules triggered by intense near-infrared and mid-infrared laser pulses. Correlated electron dynamics is of fundamental interest to attosecond technology. For instance, an electron extracted from an atom or molecule carries information for probing the spatio-temporal properties of an ionic system with angstrom resolution and attosecond precision paving the way for holography with photoelectrons. Moreover, studies of effects due to the magnetic field of light in correlated multi-electron processes are crucial for understanding a variety of chemical and biological processes, such as the response of driven chiral molecules. Chiral molecules are not superimposable to their mirror image and are of particular interest, since they are abundant in nature. The proposed research will explore highly challenging ultra-fast phenomena involving three and four-electron dynamics and effects due to the magnetic field of light in driven atoms and during the break-up of driven two and three-center molecules. We will investigate the physical mechanisms that underly these phenomena and devise schemes to probe and control them. Exploring these ultra-fast phenomena constitutes a scientific frontier due to the fast advances in attosecond technology. These fundamental processes are largely unexplored since most theoretical studies are developed in a framework that does not account for the magnetic field of light. Moreover, correlated three and four-electron escape is currently beyond the reach of quantum mechanical techniques. Hence, new theoretical tools are urgently needed to address the challenges facing attoscience. In response to this quest, we will develop novel, efficient and cutting-edge semi-classical methods that are much faster than quantum-mechanical ones, allow for significant insights into the physical mechanisms, compliment experimental results and predict novel ultra-fast phenomena. These semi-classical techniques are appropriate for ionization processes through long-range Coulomb forces. Using these techniques, we will address some of the most fundamental problems facing attoscience. Our objectives are:1) Identify and time-resolve novel pathways of correlated three-electron dynamics in atoms driven by near-infrared and mid-infrared laser pulses.2) Explore effects due to the magnetic field of light in correlated two and three-electron escape during ionization in atoms as well as in two and three-center molecules driven by near-infrared and mid-infrared laser pulses that are either linearly or elliptically polarized or by vector beams, i.e. "twisted" laser fields, an intriguing form of light that twists like a helical corkscrew.3) Control correlated multi-electron ionization and the formation of highly exited Rydberg states in four-active-electron three-center molecules by employing two-color laser fields or vector beams.
超短超强激光脉冲为电子运动的世界提供了一个令人印象深刻的相机。阿秒和亚飞秒是原子和分子电离和分裂过程中多电子动力学的自然时间尺度。拟议工作的总体目标是研究阿秒现象,相关的电子动力学的路径和由于光磁场的影响,在三个和四个电子电离的原子和分子由强近红外和中红外激光脉冲触发。关联电子动力学是阿秒技术的基础。例如,从原子或分子中提取的电子携带着用于以埃分辨率和阿秒精度探测离子系统时空特性的信息,为光电子全息术铺平了道路。此外,由于光的磁场在相关的多电子过程中的影响的研究是至关重要的理解各种化学和生物过程,如驱动手性分子的响应。手性分子不能与它们的镜像重叠,并且特别令人感兴趣,因为它们在自然界中丰富。拟议的研究将探索极具挑战性的超快现象,涉及三电子和四电子动力学以及受驱动原子中的光磁场以及受驱动的两中心和三中心分子分裂期间的效应。我们将研究这些现象背后的物理机制,并设计方案来探测和控制它们。由于阿秒技术的快速发展,探索这些超快现象构成了科学前沿。这些基本过程在很大程度上是未被探索的,因为大多数理论研究都是在不考虑光的磁场的框架中发展的。此外,相关的三电子和四电子逃逸目前超出了量子力学技术的范围。因此,迫切需要新的理论工具来应对attoscience面临的挑战。为了响应这一要求,我们将开发新的,有效的和尖端的半经典方法,比量子力学方法快得多,允许对物理机制的重要见解,补充实验结果并预测新的超快现象。这些半经典技术适用于通过长程库仑力的电离过程。使用这些技术,我们将解决一些最基本的问题所面临的attoscience。我们的目标是:1)识别和时间分辨由近红外和中红外激光脉冲驱动的原子中的相关三电子动力学的新路径。2)探索由于光的磁场在原子以及由线性或椭圆偏振的近红外和中红外激光脉冲或由矢量光束(即“扭曲”激光场)驱动的两中心和三中心分子中的电离期间的相关两电子和三电子逃逸中的效应,一种有趣的光的形式,像螺旋开瓶器一样扭曲。3)通过使用两个-彩色激光场或矢量光束。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Potential Energy Curves of Molecular Nitrogen for Singly and Doubly Ionized States with Core and Valence Holes.
具有核心和价空穴的单电离态和双电离态氮分子的势能曲线。
- DOI:10.1021/acs.jpca.1c04613
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bhattacharya D
- 通讯作者:Bhattacharya D
Momentum scalar triple product as a measure of chirality in electron ionization dynamics of strongly driven atoms
动量标量三重积作为强驱动原子电子电离动力学中手性的度量
- DOI:10.1103/physreva.106.043109
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Katsoulis G
- 通讯作者:Katsoulis G
Nondipole electron momentum offset as a probe of correlated three-electron ionization in strongly driven atoms
- DOI:10.1103/physreva.108.043111
- 发表时间:2022-10
- 期刊:
- 影响因子:2.9
- 作者:G. P. Katsoulis;M. Peters;A. Emmanouilidou
- 通讯作者:G. P. Katsoulis;M. Peters;A. Emmanouilidou
Signatures of magnetic-field effects in nonsequential double ionization manifesting as backscattering for molecules versus forward scattering for atoms
- DOI:10.1103/physreva.103.033115
- 发表时间:2020-12
- 期刊:
- 影响因子:2.9
- 作者:G. P. Katsoulis;M. Peters;A. Staudte;R. Bhardwaj;A. Emmanouilidou
- 通讯作者:G. P. Katsoulis;M. Peters;A. Staudte;R. Bhardwaj;A. Emmanouilidou
Mapping the direction of electron ionization to phase delay between VUV and IR laser pulses
将电子电离方向映射到 VUV 和 IR 激光脉冲之间的相位延迟
- DOI:10.1103/physreva.106.043106
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Mountney M
- 通讯作者:Mountney M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Agapi Emmanouilidou其他文献
Construction of a natural partition of incomplete horseshoes.
不完整马蹄形自然分区的构建。
- DOI:
10.1063/1.1859111 - 发表时间:
2003 - 期刊:
- 影响因子:2.9
- 作者:
C. Jung;Agapi Emmanouilidou - 通讯作者:
Agapi Emmanouilidou
Agapi Emmanouilidou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Agapi Emmanouilidou', 18)}}的其他基金
Semi-classical models for ultra-fast multi-electron phenomena in intense electro-magnetic laser fields
强电磁激光场中超快多电子现象的半经典模型
- 批准号:
EP/N031326/1 - 财政年份:2016
- 资助金额:
$ 54.9万 - 项目类别:
Research Grant
Control and Imaging of processes triggered by X-ray pulses in multi-center molecules
多中心分子中 X 射线脉冲触发的过程的控制和成像
- 批准号:
EP/J017183/1 - 财政年份:2012
- 资助金额:
$ 54.9万 - 项目类别:
Research Grant
Ionization of multi-electron atomic and molecular systems driven by intense and ultrashort laser pulses
强超短激光脉冲驱动的多电子原子和分子系统的电离
- 批准号:
EP/H003177/1 - 财政年份:2009
- 资助金额:
$ 54.9万 - 项目类别:
Fellowship
Double Ionization of Driven Diatomic Molecules
驱动双原子分子的双电离
- 批准号:
0855403 - 财政年份:2009
- 资助金额:
$ 54.9万 - 项目类别:
Standard Grant
相似国自然基金
基于移频计算重构和取向表征的快速三维定量超分辨成像研究
- 批准号:LQ23F050010
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
超快时空涡旋三阶非线性及其应用研究
- 批准号:12374320
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
面向厚生物样品的全自动快速三维超分辨成像研究
- 批准号:62275165
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于三元自组装与自折叠策略的新型超分子探针用于神经递质荧光成像与快速动力学分析
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于普通相机的对物体表面快速超分辨三维重构技术研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
结构光场超分辨率、高精度、快速三维测量研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
应用于三维眼底功能性成像的高稳定性超快速扫频光源的研究
- 批准号:61975246
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
基于快速压缩感知的三维单分子定位显微超分辨图像重建方法研究
- 批准号:
- 批准年份:2019
- 资助金额:5 万元
- 项目类别:专项基金项目
快速、长时程多角度三维海森结构光照明显微镜
- 批准号:31901061
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
超快速同步辐射动态断层扫描成像技术解析缓控释制剂的释放机理
- 批准号:81803446
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fast Multi-Functional 3D Imaging of Cellular Activities in Deep Tissue
深层组织细胞活动的快速多功能 3D 成像
- 批准号:
10861526 - 财政年份:2023
- 资助金额:
$ 54.9万 - 项目类别:
A fast CTOT for mapping whole brain hemodynamic activity in infants
用于绘制婴儿全脑血流动力学活动的快速 CTOT
- 批准号:
10591932 - 财政年份:2023
- 资助金额:
$ 54.9万 - 项目类别:
Fast motion-robust fetal neuroimaging with MRI
使用 MRI 进行快速运动稳健的胎儿神经成像
- 批准号:
10545512 - 财政年份:2022
- 资助金额:
$ 54.9万 - 项目类别:
Deep and fast imaging using adaptive excitation sources
使用自适应激励源进行深度快速成像
- 批准号:
10516870 - 财政年份:2022
- 资助金额:
$ 54.9万 - 项目类别:
Fast super-resolution/confocal microscopy for GI cell biology
用于胃肠道细胞生物学的快速超分辨率/共聚焦显微镜
- 批准号:
10173129 - 财政年份:2021
- 资助金额:
$ 54.9万 - 项目类别:
Construction of a three-level other's mind model that enables fast and highly accurate personalization
构建三层他人思维模型,实现快速、高精度的个性化
- 批准号:
20K23351 - 财政年份:2020
- 资助金额:
$ 54.9万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Light engineering module for fast high-resolution whole-cell imaging
用于快速高分辨率全细胞成像的光工程模块
- 批准号:
9910043 - 财政年份:2020
- 资助金额:
$ 54.9万 - 项目类别:
Light Engineering Module for Fast High-Resolution Whole-Cell Imaging
用于快速高分辨率全细胞成像的光工程模块
- 批准号:
10325024 - 财政年份:2020
- 资助金额:
$ 54.9万 - 项目类别:
Fast motion-robust fetal neuroimaging with MRI
使用 MRI 进行快速运动稳健的胎儿神经成像
- 批准号:
10756678 - 财政年份:2020
- 资助金额:
$ 54.9万 - 项目类别:
Light Engineering Module for Fast High-Resolution Whole-Cell Imaging
用于快速高分辨率全细胞成像的光工程模块
- 批准号:
10478167 - 财政年份:2020
- 资助金额:
$ 54.9万 - 项目类别: