High Resolution Unconventional Lithography for Advanced Materials
用于先进材料的高分辨率非常规光刻
基本信息
- 批准号:EP/W006502/1
- 负责人:
- 金额:$ 118.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Advanced materials and technologies underpin a significant research base and engagement with the industrial partners to identify the potential applications for everyday life and society. Electronic, quantum and spintronic devices integrated with nanoscience, have the potential to disrupt the existing technologies, providing enhanced performance. Such devices will have a wide range of potential applications and will influence various sectors, such as energy, nanotechnology, healthcare, and sensors.Nano- and quantum technology device applications with advanced materials require precise fabrication of nanoscale patterns, and nanostructuring of materials that exhibit an intrinsic functionality. There are several existing nanofabrication tools and among all electron-beam lithography is extensively used in academia for writing nanoscale features. However, there are several limitations - difficulty to generate arbitrary and complex nanopatterns on large areas, need of high vacuum conditions, selective to only few substrates, time consuming, which all limit the high throughput and make the production expensive. Notably, nanofabrication remains challenging, with majority of techniques limited by their resolution and speed. There is therefore an urgent need for stat-of-the-art fabrication infrastructure that can provide nanometer spatial resolution with high speed, simple and cost effective methodologies to develop novel devices and their scale-up.The proposed unconventional high-resolution nanofabrication facility, HiRes, will be a new national facility and will provide the 'missing tool' for advanced nanoscale material preparation and characterisation. The HiRes tools produce features below 20 nm with high speed, precision and reliability using direct heated probe lithography. The conventional lithographic techniques capable of producing such narrow structures use electrons or ions, however they may induce structural damage, are prone to polymeric resist residues from the fabrication process, and often incompatible with new materials. HiRes offers a game-changer technology with high-resolution (minimum demonstrated feature size 7 nm), damage-free lithography (heat is the stimulus), 3D nanostructuring of multiple levels, high speed (1 mm/s), marker-less overlay, correlation stitching, adaptable to emerging materials and compatible with a variety of substrates (including flexible and wearables, biomaterials). HiRes enables the fabrication of nanoscale features with high resolution for applications in high performance computing, high density data storage, devices operating in THz range, sub-wavelength waveguides, photonic crystals and plasmonic structures, to name a few.The HiRes nanofabrication and surface characterization suite will be installed within the National Graphene Institute (NGI) at the University of Manchester and will provide unprecedented capability for nanofabrication and advanced functional materials research. This is a national nanofabrication facility which has one of the largest such cleanroom facilities in the UK/EU, and is a world leading centre for research on graphene and other 2D materials. Access to the HiRes will be made available to UK academics and industry undertaking research in this area through the NGI and Henry Royce Institute, UK national facility for Advanced Materials. We expect this cutting edge facility will both foster ambitious multidisciplinary collaborative research, and provide a platform for new exciting research, particularly for our early career researchers.
先进的材料和技术支撑着重要的研究基础,并与工业合作伙伴合作,以确定日常生活和社会的潜在应用。电子、量子和自旋电子器件与纳米科学相结合,有可能破坏现有技术,提供更高的性能。这些器件将具有广泛的潜在应用,并将影响能源、纳米技术、医疗保健和传感器等各个领域。纳米和量子技术器件应用于先进材料,需要精确制造纳米级图案,并对材料进行纳米结构化,以显示固有功能。有几种现有的纳米加工工具,其中电子束光刻在学术界广泛用于写入纳米级特征。然而,存在几个限制-难以在大面积上产生任意和复杂的纳米粒子,需要高真空条件,仅对少数衬底有选择性,耗时,这些都限制了高产量并使生产昂贵。值得注意的是,纳米纤维仍然具有挑战性,大多数技术受到其分辨率和速度的限制。因此,迫切需要一个国家的最先进的制造基础设施,可以提供纳米空间分辨率与高速,简单和具有成本效益的方法来开发新的设备和他们的scaleup.The拟议中的非常规高分辨率nanofabletics设施,HiRes,将是一个新的国家设施,并将提供先进的纳米材料制备和表征的“失踪的工具”。HiRes工具使用直接加热探针光刻法以高速、精度和可靠性生产20 nm以下的特征。能够产生这种窄结构的常规光刻技术使用电子或离子,然而它们可能引起结构损伤,易于产生来自制造过程的聚合物抗蚀剂残留物,并且通常与新材料不相容。HiRes提供了一种改变游戏规则的技术,具有高分辨率(最小显示特征尺寸为7 nm),无损伤光刻(热是刺激),多层次的3D纳米结构,高速(1 mm/s),无标记覆盖,相关拼接,适用于新兴材料,并与各种基材(包括柔性和可穿戴材料,生物材料)兼容。HiRes使得能够制造具有高分辨率的纳米级特征,用于高性能计算、高密度数据存储、在THz范围内操作的器件、亚波长波导、光子晶体和等离子体结构,仅举几例。HiRes纳米芯片和表面表征套件将安装在国家石墨烯研究所(NGI)内在曼彻斯特大学,并将提供纳米纤维和先进的功能材料研究前所未有的能力。这是一个国家级的纳米工厂,拥有英国/欧盟最大的洁净室设施之一,是石墨烯和其他2D材料研究的世界领先中心。通过NGI和亨利罗伊斯研究所(英国国家先进材料研究所),英国学术界和工业界在这一领域进行研究时,将可以使用HiRes。我们希望这个尖端的设施将促进雄心勃勃的多学科合作研究,并为新的令人兴奋的研究提供一个平台,特别是为我们的早期职业研究人员。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fabrication of angstrom-scale two-dimensional channels for mass transport
- DOI:10.1038/s41596-023-00911-x
- 发表时间:2023-11
- 期刊:
- 影响因子:14.8
- 作者:Ankit Bhardwaj;Marcos Vinicius Surmani Martins;Yi You;Ravalika Sajja;Max Rimmer;S. Goutham;Rongrong Qi;Sidra Abbas Dar;Boya Radha;A. Keerthi
- 通讯作者:Ankit Bhardwaj;Marcos Vinicius Surmani Martins;Yi You;Ravalika Sajja;Max Rimmer;S. Goutham;Rongrong Qi;Sidra Abbas Dar;Boya Radha;A. Keerthi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Radha Boya其他文献
2004 ACM Symposium on Applied Computing An Optimized Approach for KNN Text Categorization using P-trees
2004 ACM 应用计算研讨会使用 P 树进行 KNN 文本分类的优化方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Daniel J Eichelsdoerfer;K. A. Brown;Radha Boya;W. Shim;C. Mirkin - 通讯作者:
C. Mirkin
Radha Boya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Radha Boya', 18)}}的其他基金
FLUXIONIC: Controlled transport of water and ions in nanoconfinement
FLUXIONIC:纳米限制中水和离子的受控传输
- 批准号:
EP/Y031156/1 - 财政年份:2024
- 资助金额:
$ 118.48万 - 项目类别:
Research Grant
Nano manufacturing of ultrathin membranes
超薄膜的纳米制造
- 批准号:
EP/X019225/1 - 财政年份:2023
- 资助金额:
$ 118.48万 - 项目类别:
Research Grant
Ion Transport through Atomically Thin Cap74illaries
通过原子薄帽的离子传输74llaries
- 批准号:
EP/R013063/1 - 财政年份:2018
- 资助金额:
$ 118.48万 - 项目类别:
Research Grant
相似海外基金
CAREER: Unconventional superconductivity and disordered criticality in two dimensions
职业:非常规超导性和二维无序临界性
- 批准号:
2341066 - 财政年份:2024
- 资助金额:
$ 118.48万 - 项目类别:
Continuing Grant
Uncovering the unconventional and multifaceted roles of histamine in bacterial infection
揭示组胺在细菌感染中的非常规和多方面的作用
- 批准号:
502559 - 财政年份:2024
- 资助金额:
$ 118.48万 - 项目类别:
How do unconventional T cells die?
非常规T细胞如何死亡?
- 批准号:
DP240101173 - 财政年份:2024
- 资助金额:
$ 118.48万 - 项目类别:
Discovery Projects
Discovery and optimisation of unconventional yeasts to enable the industrial scaling of alternative protein production using precision fermentation
非常规酵母的发现和优化,以实现利用精密发酵实现替代蛋白质生产的工业规模化
- 批准号:
10074091 - 财政年份:2023
- 资助金额:
$ 118.48万 - 项目类别:
Grant for R&D
Time Resolved Probing of Unconventional Orders in Novel Kagome Metals
新型 Kagome 金属中非常规有序的时间分辨探测
- 批准号:
2226519 - 财政年份:2023
- 资助金额:
$ 118.48万 - 项目类别:
Standard Grant
Elasto-superconductivity: a pathway to devising new unconventional superconductors
弹性超导:设计新型非常规超导体的途径
- 批准号:
EP/X01245X/1 - 财政年份:2023
- 资助金额:
$ 118.48万 - 项目类别:
Research Grant
Unconventional Excitations and Information Spreading in Frustrated Quantum Magnets
受挫量子磁体中的非常规激发和信息传播
- 批准号:
23KJ2136 - 财政年份:2023
- 资助金额:
$ 118.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Regulation of maintenance and activation of unconventional T cells
非常规 T 细胞的维持和激活的调节
- 批准号:
23H00403 - 财政年份:2023
- 资助金额:
$ 118.48万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Remote epitaxy on van der Waals materials: unveiling adatom interaction, growing single-crystal membranes, and producing unconventional heterostructures
合作研究:范德华材料的远程外延:揭示吸附原子相互作用、生长单晶膜以及产生非常规异质结构
- 批准号:
2240995 - 财政年份:2023
- 资助金额:
$ 118.48万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Discovery of unconventional superconductors by design
合作研究:DMREF:通过设计发现非常规超导体
- 批准号:
2323970 - 财政年份:2023
- 资助金额:
$ 118.48万 - 项目类别:
Standard Grant