Ion Transport through Atomically Thin Cap74illaries

通过原子薄帽的离子传输74llaries

基本信息

  • 批准号:
    EP/R013063/1
  • 负责人:
  • 金额:
    $ 12.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

I propose to study the size effect in ion transport through capillaries with principal dimensions of few angstroms (Å). Ion sieving is of extreme importance in many natural systems (sub-nm ion channels perform important functions in cellular membranes) and in many technologies including desalination, chemical separation, dialysis, bio-analytics, etc. It has so far been only a distant goal to create artificial channels of this size, tune their properties as required and investigate their functioning. Traditionally, zeolites and porous polymer membranes are used for ionic and molecular sieving but the large size distribution and quest for smart membranes has driven the research in this area. Despite all the progress during the last decades, including the use of nanotubes and advanced nanolithography techniques, this goal could not be even approached, with device dimensions rarely reaching the true nanoscale in a limited number of geometries and with a limited number of materials. This is a formidable challenge, but also a central reason to engage in this fascinating area of research and I want to address this challenge by the use of 2D-atomic crystals. 2D-atomic crystals are highly fascinating and offer a route to the fabrication of "devices-by-design" through van der Waals heterostructure assembly with their properties tuned via chosen materials. If individual atomic planes were removed from a bulk crystal leaving behind flat voids of a chosen height; the tiny empty space has so much to offer in terms of manipulation of fluids, liquids, gases, particles and ions.Not only is this a groundbreaking technological advancement of the field of nanofluidics but also importantly the proposed capillaries offer a platform for studying fundamental scientific phenomenon of ionic transport in ultimately confined spaces. The key aims of this proposal are (1) investigation of in-depth intrinsic ion transport through these capillaries, including the role of steric effects, ion entry-exit effects especially when the size of ion is comparable to the capillary size, effect of 'quantum' confinement on the hydration shells surrounding the ions inside capillaries, etc. Such in-depth analysis is possible only because the proposed capillaries are atomically clean and involve little surface charge, unlike the previously studied experimental systems (e.g., nanotubes) dominated by the latter. (2) Gaining insights from the fundamentals of ion transport through these slits, smart capillaries will be constructed where the ions can be manipulated by a perpendicular electric field. The project will be executed at the University of Manchester (UoM) in condensed matter physics group, school of physics which has pioneered graphene/2D-materials research and National Graphene Institute. At the UoM, the graphene group is spread across many schools in the faculty of physics, chemistry, computer science, materials and life sciences, widening the scope of the possible target applications of the smart capillaries and making the project truly interdisciplinary. Our fabrication approach of angstrom-scale capillaries offers a great flexibility, reproducibility and possibility for design and sophisticated engineering, as described in the proposal. In particular, our fabrication procedures provide a new direction for the already exciting large field of nanofluidics but are not limited to only one area. By tackling a core issue i.e., understanding the intrinsic ion transport, alongside overcoming the primary obstacle to exploiting Å-scale confined spaces for size-selective ion separation, my research will impact across a broad range of fields and technologies including desalination, paving the way to future applications of far-reaching social and economic importance.
我建议研究离子通过主尺度为几埃(埃)的毛细管传输的尺寸效应。离子筛分在许多自然系统(亚纳米离子通道在细胞膜中发挥重要作用)和许多技术(包括脱盐、化学分离、透析、生物分析等)中具有极其重要的意义。到目前为止,创建这种尺寸的人工通道、根据需要调整其特性并研究其功能只是一个遥远的目标。传统上,沸石和多孔聚合物膜用于离子和分子筛,但大尺寸分布和对智能膜的追求推动了该领域的研究。尽管在过去几十年中取得了所有进展,包括使用纳米管和先进的纳米光刻技术,但这一目标甚至无法实现,器件尺寸很少在有限数量的几何形状和有限数量的材料中达到真正的纳米级。这是一个巨大的挑战,但也是从事这一迷人研究领域的核心原因,我想通过使用2D原子晶体来解决这一挑战。二维原子晶体是非常迷人的,并提供了一条路线,通过货车德瓦尔斯异质结构组装与他们的性质通过选择材料调谐的“设备设计”的制造。如果从大块晶体中去除单个原子平面,留下选定高度的平坦空隙;这个微小的空间在操控流体,液体,气体,这不仅是纳米流体领域的突破性技术进步,而且重要的是,所提出的毛细管为研究离子传输的基本科学现象提供了一个平台,密闭空间本研究的主要目的是(1)深入研究离子在毛细管中的内在传输,包括空间位阻效应、离子进出效应(尤其是当离子大小与毛细管大小相当时)、“量子”限制对毛细管内离子周围水化壳层的影响,这样的深入分析是可能的,仅仅是因为所提出的毛细管是原子级清洁的并且涉及很少的表面电荷,这与先前研究的实验系统(例如,nanotubes)由后者主导。(2)从离子通过这些狭缝传输的基本原理中获得见解,将构建智能毛细管,其中离子可以通过垂直电场进行操纵。该项目将在曼彻斯特大学(UoM)的凝聚态物理组,物理学院和国家石墨烯研究所执行,该学院开创了石墨烯/2D材料研究。在UoM,石墨烯组分布在物理,化学,计算机科学,材料和生命科学学院的许多学校,扩大了智能毛细管可能的目标应用范围,并使该项目真正跨学科。我们的埃级毛细管的制造方法为设计和复杂工程提供了极大的灵活性,可重复性和可能性,如提案中所述。特别是,我们的制造程序为已经令人兴奋的大领域纳米流体提供了一个新的方向,但不仅限于一个领域。通过解决一个核心问题,即,了解内在的离子传输,以及克服利用大规模有限空间进行尺寸选择性离子分离的主要障碍,我的研究将影响包括海水淡化在内的广泛领域和技术,为未来具有深远社会和经济意义的应用铺平道路。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Water friction in nanofluidic channels made from two-dimensional crystals.
由二维晶体制成的纳米流体通道中的水摩擦。
  • DOI:
    10.1038/s41467-021-23325-3
  • 发表时间:
    2021-05-25
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Keerthi A;Goutham S;You Y;Iamprasertkun P;Dryfe RAW;Geim AK;Radha B
  • 通讯作者:
    Radha B
Gas flow through atomic-scale apertures
  • DOI:
    10.1126/sciadv.abc7927
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Thiruraman, Jothi Priyanka;Dar, Sidra Abbas;Radha, Boya
  • 通讯作者:
    Radha, Boya
Fast water flow through graphene nanocapillaries: A continuum model approach involving the microscopic structure of confined water
  • DOI:
    10.1063/1.5037992
  • 发表时间:
    2018-08-20
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Neek-Amal, M.;Lohrasebi, A.;Peeters, F. M.
  • 通讯作者:
    Peeters, F. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Radha Boya其他文献

2004 ACM Symposium on Applied Computing An Optimized Approach for KNN Text Categorization using P-trees
2004 ACM 应用计算研讨会使用 P 树进行 KNN 文本分类的优化方法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel J Eichelsdoerfer;K. A. Brown;Radha Boya;W. Shim;C. Mirkin
  • 通讯作者:
    C. Mirkin

Radha Boya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Radha Boya', 18)}}的其他基金

FLUXIONIC: Controlled transport of water and ions in nanoconfinement
FLUXIONIC:纳米限制中水和离子的受控传输
  • 批准号:
    EP/Y031156/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Research Grant
Nano manufacturing of ultrathin membranes
超薄膜的纳米制造
  • 批准号:
    EP/X019225/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Research Grant
High Resolution Unconventional Lithography for Advanced Materials
用于先进材料的高分辨率非常规光刻
  • 批准号:
    EP/W006502/1
  • 财政年份:
    2022
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Research Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Lipid-polymer membranes: understanding ion transport through hybrid materials at the nanoscale
脂质聚合物膜:了解纳米级混合材料中的离子传输
  • 批准号:
    2219305
  • 财政年份:
    2022
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Standard Grant
Mechanosensitive ion transport through hexagonal boron nitride nanopores
通过六方氮化硼纳米孔的机械敏感离子传输
  • 批准号:
    2110924
  • 财政年份:
    2021
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Standard Grant
Development of novel electrodeposition system through ion transport using solid polyelectrolyte membrane
使用固体聚电解质膜通过离子传输开发新型电沉积系统
  • 批准号:
    20H02487
  • 财政年份:
    2020
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
  • 批准号:
    1904453
  • 财政年份:
    2019
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Standard Grant
Ion transport through carbon nanotubes
通过碳纳米管的离子传输
  • 批准号:
    2274173
  • 财政年份:
    2019
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Studentship
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
  • 批准号:
    1904545
  • 财政年份:
    2019
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Standard Grant
An integrated study of ion dynamics and population distributions to understand the molecular underpinnings of charge transport through self-assembled solid polymer electrolytes
离子动力学和粒子分布的综合研究,以了解通过自组装固体聚合物电解质进行电荷传输的分子基础
  • 批准号:
    1805345
  • 财政年份:
    2018
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Standard Grant
CAREER: Safe, High-Performance Li-Ion Batteries Through a Fundamental Investigation of Thermal Transport in Electrochemical Materials and Interfaces
职业:通过电化学材料和界面热传输的基础研究来实现安全、高性能的锂离子电池
  • 批准号:
    1554183
  • 财政年份:
    2016
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Standard Grant
Ion and antibiotics transport through the phosphate specific outer membrane porins OprP and OprO
离子和抗生素通过磷酸盐特异性外膜孔蛋白 OprP 和 OprO 运输
  • 批准号:
    190764917
  • 财政年份:
    2011
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Research Grants
Simulation of ion transport and substrate translocation through nanopores
模拟通过纳米孔的离子传输和底物易位
  • 批准号:
    135618365
  • 财政年份:
    2009
  • 资助金额:
    $ 12.9万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了