Uncertainty Quantification at the Exascale (EXA-UQ)
百亿亿级不确定性量化 (EXA-UQ)
基本信息
- 批准号:EP/W007886/1
- 负责人:
- 金额:$ 128.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Exascale computing offers the prospect of running numerical models, for example of nuclear fusion and the climate, at unprecedented resolution and fidelity, but such models are still subject to uncertainty and we need to able to quantify such uncertainties (and for example use data on model outputs to calibrate the model inputs). Exascale computing comes at a cost. We will never be able to run huge ensembles go models on Exascale computers. Naive methods, such as Monte Carlo where we simply sample from the probability distribution of the model inputs, run a huge ensemble of models and produce a sample from the output distribution, are not going to be feasible. We need to develop uncertainty quantification methodology that allows us to efficiently, and effectively, perform sensitivity and uncertainty calculations with the minimum number of exascale model runs.Our methods are based on the idea of an emulator. An emulator is a statistical approximation linking model inputs and outputs in a fast non-linear way. It also includes a measure of its own uncertainty so we know how well it is approximating the original numerical model. Our emulators are based on Gaussian processes. Normally we would run a designed experiment and use these results to train the emulator. Because of the cost of exascale computing we use a hierarchy of models from fast, low fidelity versions through higher fidelity more computationally expensive ones to the very expensive, very high fidelity one at the apex of the hierarchy. Building a joint emulator for all the models in the hierarchy allows us to gain strength from the low fidelity ones to emulate the exascale models. Although such ideas have been around for a number of years they have not been exploited much for very large models.We will expand on the existing theory on a number of new ways. First we will look at the problem of design. To exploit the hierarchy to its fullest extent we need an experimental design that allocates model runs to the correct layer of the model hierarchy. We will extend existing sequential design methodology to work with hierarchies of model, not only finding the optimal next set of inputs for running the model but also which level it should be run in. We will also ensure that the sequential design is 'batch' sequential, allowing us to run ensembles rather than waiting for each run to return answers.Because the inputs and outputs of exascale models are often fields of correlated values we will develop methods for handling such high dimensional inputs and outputs and how to relate them to other levels of the hierarchy.Finally we will investigate whether AI methods other than Gaussian processes can be used to build efficient emulators.
百亿亿次计算提供了以前所未有的分辨率和保真度运行数值模型的前景,例如核聚变和气候,但此类模型仍然存在不确定性,我们需要能够量化此类不确定性(例如使用模型输出的数据来校准模型输入)。百亿亿次计算是有代价的。我们永远无法在百亿亿次计算机上运行巨大的集成围棋模型。简单的方法,例如蒙特卡罗,我们只是从模型输入的概率分布中进行采样,运行大量模型并从输出分布中生成样本,这是不可行的。我们需要开发不确定性量化方法,使我们能够以最少的百亿亿次模型运行次数高效、有效地执行灵敏度和不确定性计算。我们的方法基于模拟器的理念。模拟器是一种以快速非线性方式链接模型输入和输出的统计近似。它还包括对其自身不确定性的测量,因此我们知道它与原始数值模型的近似程度。我们的模拟器基于高斯过程。通常我们会运行一个设计好的实验并使用这些结果来训练模拟器。由于百亿亿级计算的成本,我们使用一系列模型,从快速、低保真度版本到更高保真度、计算成本更高的版本,再到位于层次结构顶端的非常昂贵、非常高保真度版本。为层次结构中的所有模型构建联合模拟器使我们能够从低保真度模型中获得力量来模拟百亿亿次模型。尽管这样的想法已经存在了很多年,但它们还没有在非常大的模型中得到充分利用。我们将以许多新的方式扩展现有的理论。首先我们来看看设计的问题。为了充分利用层次结构,我们需要一个实验设计,将模型运行分配到模型层次结构的正确层。我们将扩展现有的顺序设计方法以处理模型的层次结构,不仅找到运行模型的最佳下一组输入,而且还确定模型应该在哪个级别运行。我们还将确保顺序设计是“批量”顺序的,使我们能够运行集成而不是等待每次运行返回答案。因为百亿亿次模型的输入和输出通常是相关值的字段,我们将开发处理如此高维的方法 输入和输出以及如何将它们与层次结构的其他级别相关联。最后,我们将研究是否可以使用高斯过程以外的人工智能方法来构建高效的模拟器。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-Validation--based Adaptive Sampling for Gaussian Process Models
基于交叉验证的高斯过程模型自适应采样
- DOI:10.1137/21m1404260
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mohammadi H
- 通讯作者:Mohammadi H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Challenor其他文献
Propagating moments in probabilistic graphical models with polynomial regression forms for decision support systems
用于决策支持系统的具有多项式回归形式的概率图模型中的传播矩
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
V. Volodina;Nikki Sonenberg;Peter Challenor;Jim Q. Smith - 通讯作者:
Jim Q. Smith
Quantifying causal teleconnections to drought and fire risks in Indonesian Borneo
量化印度尼西亚婆罗洲干旱和火灾风险的因果遥相关
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Timothy Lam;J. Catto;Rosa Barciela;A. Harper;Peter Challenor;Alberto Arribas - 通讯作者:
Alberto Arribas
Peter Challenor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Challenor', 18)}}的其他基金
CAMPUS (Combining Autonomous observations and Models for Predicting and Understanding Shelf seas)
CAMPUS(结合自主观测和模型来预测和理解陆架海)
- 批准号:
NE/R006768/1 - 财政年份:2018
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant
BIG data methods for improving windstorm FOOTprint prediction (BigFoot)
改进风暴足迹预测的大数据方法(BigFoot)
- 批准号:
NE/P017436/1 - 财政年份:2017
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant
From Models To Decisions (M2D)
从模型到决策 (M2D)
- 批准号:
EP/P016774/1 - 财政年份:2017
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant
Uncertainty, Probability, Models And Climate Change
不确定性、概率、模型和气候变化
- 批准号:
NE/D000777/1 - 财政年份:2006
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant
相似国自然基金
相似海外基金
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
- 批准号:
EP/Y000145/1 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track L: UAV-assisted dual-comb spectroscopic detection, localization, and quantification of multiple atmospheric trace-gas emissions
NSF 收敛加速器轨道 L:无人机辅助的双梳光谱检测、定位和多种大气痕量气体排放的量化
- 批准号:
2344395 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
Standard Grant
CAREER: Virtual physiology of human tumor tissue for malignancy quantification
职业:用于恶性肿瘤定量的人体肿瘤组织虚拟生理学
- 批准号:
2340149 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
Continuing Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
Standard Grant
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
- 批准号:
EP/X041093/1 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant
KnowLEdGE creation and iNcreasing acreage of legumes in Diversified cropping systems by quAntification of theiR ecosYstem services (LEGENDARY)
通过量化生态系统服务来创造知识并增加多样化种植系统中的豆类种植面积(传奇)
- 批准号:
10089689 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
EU-Funded
Conference: Power of Diversity in Uncertainty Quantification (PoD UQ)
会议:不确定性量化中多样性的力量 (PoD UQ)
- 批准号:
2403506 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
Standard Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
Continuing Grant
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
- 批准号:
2329250 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
Standard Grant
UQ4FM: Uncertainty quantification algorithms for flood modelling
UQ4FM:洪水建模的不确定性量化算法
- 批准号:
EP/X040941/1 - 财政年份:2024
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant