CAMPUS (Combining Autonomous observations and Models for Predicting and Understanding Shelf seas)

CAMPUS(结合自主观测和模型来预测和理解陆架海)

基本信息

  • 批准号:
    NE/R006768/1
  • 负责人:
  • 金额:
    $ 40.14万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Shelf seas are of major societal importance providing a diverse range of goods (e.g. fisheries, renewable energy, transport) and services (e.g. carbon and nutrient cycling and biodiversity). Managing UK seas to maintain clean, healthy, safe, productive and biologically diverse oceans and seas is a key governmental objective, as evidenced by the obligations to obtain Good Environmental Status (GES) under the UK Marine Strategy Framework, the Convention on Biological Diversity and ratification of the Oslo-Paris Convention (OSPAR) .. The delivery of these obligations requires comprehensive information about the state of our seas which in turn requires a combination of numerical models and observational programs. Computer modelling of marine ecosystems allows us to explore the recent past and predict future states of physical, chemical and biological properties of the sea, and how they vary in 3D space and time. In an analogous manner to the weather forecast, the Met Office runs a marine operational forecast system providing both short term forecast and multi-decadal historical data products. The quality of these forecasts is improved by using data assimilation; the process of predicting the most accurate ocean state using observations to nudge model simulations, producing a combined observation and model product. Marine autonomous vehicles (MAVs) are a rapidly maturing technology and are now routinely deployed both in support of research and as a component of an ocean observing system. When used in conjunction with fixed point observatories, ships of opportunity and satellite remote sensing, the strategic deployment of MAVs offers the prospect of substantial improvement in our observing network. Marine Gliders in particular have the capability to provide depth resolved data sets of high resolution from deployments that can endure several months and cover 100s kms, allowing the collection of sufficient information to be useful for assimilation into models. We will improve the exchange of data between model systems and observational networks to inform an improved strategy for the deployment of the UK's high-cost marine observing capability. In particular we will utilise mathematical and statistical models to develop and test "smart" autonomy - autonomous systems that are enabled to selectively search and monitor explicit features within the marine system. By developing data assimilation techniques to utilise autonomous data, our model systems will be able to better characterise episodic events such as the spring bloom, harmful algal blooms and oxygen depletion, which are currently not well captured and are key to understanding ecosystem variability and therefore quantifying GES.In doing so CAMPUS will provide a step change in the combined use of observation and modelling technologies, delivered through a combination of autonomous technologies (gliders), other observations and shelf-wide numerical models. This will provide improved analysis of key ocean variables, better predictions of episodic events, and 'smart' observing systems in order to improve the evidence base for compliance with European directives and support the UK industrial strategy.
陆架海具有重大的社会意义,可提供各种货物(如渔业、可再生能源、运输)和服务(如碳和营养循环和生物多样性)。管理联合王国海洋以保持清洁、健康、安全、多产和生物多样性的海洋是一项关键的政府目标,英国海洋战略框架、生物多样性公约和批准奥斯陆-巴黎公约(奥斯陆-巴黎公约)规定的获得良好环境状况的义务证明了这一点。履行这些义务需要关于我们海洋状况的全面信息,而这又需要数值模型和观测方案的结合。海洋生态系统的计算机模拟使我们能够探索最近的过去和预测海洋的物理、化学和生物特性的未来状态,以及它们在3D空间和时间中的变化。与天气预报类似,气象局运行一个海洋业务预报系统,提供短期预报和数十年历史数据产品。这些预报的质量通过使用数据同化来改进;数据同化是使用观测来预测最准确的海洋状态的过程,以推动模型模拟,产生组合的观测和模型产品。海洋自动航行器(MAV)是一项迅速成熟的技术,现在被常规地部署在支持研究和作为海洋观测系统的一个组成部分。当与定点观测站、机遇号船和卫星遥感一起使用时,MAVS的战略部署为我们的观测网络提供了实质性改善的前景。海洋滑翔机尤其有能力从部署中提供高分辨率的深度分辨数据集,这种部署可以持续几个月,覆盖100公里,使收集的足够信息有助于同化到模型中。我们将改进模型系统和观测网络之间的数据交换,为部署英国高成本的海洋观测能力提供改进的战略。特别是,我们将利用数学和统计模型来开发和测试“智能”自主系统,这些系统能够有选择地搜索和监控海洋系统中的明确特征。通过开发数据同化技术来利用自主数据,我们的模式系统将能够更好地描述春季水华、有害藻华和氧气耗竭等周期性事件,这些事件目前没有得到很好的捕捉,是理解生态系统变异性并因此量化GE的关键。通过这样做,校园将在观测和建模技术的组合使用方面产生一步变化,通过自主技术(滑翔机)、其他观测和整个陆架范围的数值模式的组合来提供。这将改进对关键海洋变量的分析,更好地预测事件,并建立“智能”观测系统,以改善遵守欧洲指令的证据基础,并支持英国的产业战略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Challenor其他文献

Propagating moments in probabilistic graphical models with polynomial regression forms for decision support systems
用于决策支持系统的具有多项式回归形式的概率图模型中的传播矩
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Volodina;Nikki Sonenberg;Peter Challenor;Jim Q. Smith
  • 通讯作者:
    Jim Q. Smith
Quantifying causal teleconnections to drought and fire risks in Indonesian Borneo
量化印度尼西亚婆罗洲干旱和火灾风险的因果遥相关
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy Lam;J. Catto;Rosa Barciela;A. Harper;Peter Challenor;Alberto Arribas
  • 通讯作者:
    Alberto Arribas

Peter Challenor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Challenor', 18)}}的其他基金

Uncertainty Quantification at the Exascale (EXA-UQ)
百亿亿级不确定性量化 (EXA-UQ)
  • 批准号:
    EP/W007886/1
  • 财政年份:
    2021
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Research Grant
BIG data methods for improving windstorm FOOTprint prediction (BigFoot)
改进风暴足迹预测的大数据方法(BigFoot)
  • 批准号:
    NE/P017436/1
  • 财政年份:
    2017
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Research Grant
From Models To Decisions (M2D)
从模型到决策 (M2D)
  • 批准号:
    EP/P016774/1
  • 财政年份:
    2017
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Research Grant
RAPID-RAPIT
快速
  • 批准号:
    NE/G015368/1
  • 财政年份:
    2009
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Research Grant
Uncertainty, Probability, Models And Climate Change
不确定性、概率、模型和气候变化
  • 批准号:
    NE/D000777/1
  • 财政年份:
    2006
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Research Grant

相似海外基金

Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
  • 批准号:
    24K16140
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
STEM Teacher Effectiveness and Retention in High-Need Schools: Combining Equity & Ecological Frameworks
高需求学校的 STEM 教师效能和保留率:结合公平
  • 批准号:
    2345129
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Continuing Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Collaborative R&D
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Standard Grant
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
  • 批准号:
    2335725
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Standard Grant
Combining structural biology and genetics to understand the function of a multi-gene family expanded in neglected human malaria parasites
结合结构生物学和遗传学来了解在被忽视的人类疟疾寄生虫中扩展的多基因家族的功能
  • 批准号:
    MR/Y012895/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Research Grant
Risk Assuring Future Structure Critical Systems: Combining 21st Century Science with Engineering Intuition - Renewal
确保未来结构关键系统的风险:将 21 世纪科学与工程直觉相结合 - Renewal
  • 批准号:
    MR/Y020235/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Fellowship
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Standard Grant
Co-creating digital education about parenting and father-inclusive practice: combining QL impact research and commercialisation for the social good
共同创建有关育儿和父亲包容性实践的数字教育:将 QL 影响研究与商业化相结合,造福社会
  • 批准号:
    MR/Y00356X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.14万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了