Robust manufacturable antimicrobial surfaces enabled by superhard plasmon-enhanced photocatalytic materials
由超硬等离子体增强光催化材料实现的坚固的可制造抗菌表面
基本信息
- 批准号:EP/W009501/1
- 负责人:
- 金额:$ 99.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Untreatable infections are one of the biggest modern-day dangers to society, which the current SARS-CoV-2 pandemic has highlighted. The development of antibiotics has been one of the major medical successes of the last 100 years. However, the capacity of pathogens to evolve and acquire resistance to new antibiotics makes their effectiveness necessarily precarious. Meanwhile, studies on the spread of drug-resistant pathogens such as MRSA, respiratory syncytial virus, norovirus and CoVID-19 suggest that surfaces are a major point of transmission with CoVID-19 remaining infectious on plastic and stainless steel surfaces for up to 6 days. Surfaces with an antimicrobial function that avoid or minimise the use of antibiotics whilst maintaining good efficacy after prolonged use are critically needed in hospitals, living spaces, and on biomedical implants, to reduce healthcare-acquired and public space-acquired infections, reduce healthcare costs, and promote healthier lives. However standard antimicrobial surfaces are not sufficiently robust to withstand the wear and tear encountered in a biomedical implant environment and in public spaces. Sheffield Hallam University and Imperial College London aim to develop superhard nanostructured surfaces with plasmonically-enhanced photocatalysis which will enable microbial inactivation in both illuminated and dark environments whilst retaining their robustness and effectiveness in the long term and which, as a result, will lead to orthopaedic implants and anti-microbial surfaces that are more functional than those produced with the current technologies. The innovative antimicrobial surfaces will be robust due to the use of superhard nanoscale multilayer coatings with wear rates up to 1000 times better than conventional metal alloys. At the same time the robust antimicrobial surfaces will have a dual functionality - (1) active, they will be able to kill microorganisms by photocatalysing the production of highly reactive singlet oxygen - one of the most effective killers of pathogens. The photocatalysis will be activated by visible light from the environment. The light will interact with a carefully prepared coating material to induce plasmonic resonance on its surface and generate high energy electrons which are needed to boost the photocatalytic reaction. (2) passive, mimicking naturally occurring surfaces such as the cicada wing, the surfaces will contain a number of appropriately dimensioned nanopillars which will stretch and mechanically rupture the walls of microorganisms. This functionality is potent in wet, dry, illuminated or dark environments.We have developed a new plasmonic nanoscale multilayer material which activates photocatalysis under standard (visible) light and have developed technology based on high power impulse magnetron sputtering which can produce these materials at room temperature on polymers. We will study the plasma processes needed to produce the materials and nanopillars, their response to light activation and the effect they have on microbials. This will help us to develop a cost-effective manufacturing technology to enable large scale production by upgrading systems which are already available in industry for coating deposition and nanopatterning with a digitalised system control which is driven by artificial intelligence algorithms. Together with the local NHS hospital trust we will trial the material on metal plates for door furniture and polymer sheets to cover surfaces in hospitals (beds, seating areas). When successful we will have some of the most exciting new developments in robust antimicrobial materials and their manufacturing and take a step closer to a world with fully effective infection control.
无法治愈的感染是当今社会面临的最大危险之一,目前的SARS-CoV-2大流行突出了这一点。抗生素的发展是过去100年来医学上的重大成就之一。然而,病原体进化和获得对新抗生素的耐药性的能力使其有效性必然不稳定。与此同时,对耐药性病原体(如MRSA、呼吸道合胞病毒、诺如病毒和COVID-19)传播的研究表明,表面是COVID-19在塑料和不锈钢表面上保持传染性长达6天的主要传播点。在医院、生活空间和生物医学植入物上,迫切需要具有抗微生物功能的表面,以避免或最小化抗生素的使用,同时在长期使用后保持良好的功效,以减少医疗保健获得性和公共空间获得性感染,降低医疗保健成本,促进更健康的生活。然而,标准的抗微生物表面不足以承受在生物医学植入物环境和公共空间中遇到的磨损和撕裂。谢菲尔德哈勒姆大学和帝国理工学院伦敦的目标是开发具有等离子体增强的表面的超硬纳米结构表面,这将使微生物在光照和黑暗环境中灭活,同时保持其长期的鲁棒性和有效性,因此,这将导致矫形植入物和抗菌表面比用当前技术生产的那些更有功能。创新的抗菌表面将是强大的,由于使用超硬纳米级多层涂层的磨损率高达1000倍,比传统的金属合金。同时,坚固的抗菌表面将具有双重功能-(1)活性,它们将能够通过光催化产生高活性单线态氧来杀死微生物-这是病原体最有效的杀手之一。该传感器将被来自环境的可见光激活。光将与精心制备的涂层材料相互作用,以在其表面上诱导等离子体共振,并产生促进光催化反应所需的高能电子。(2)被动的、模仿天然存在的表面如翼片,该表面将包含许多适当尺寸的纳米柱,其将拉伸并机械地破裂微生物的壁。这种功能在潮湿、干燥、光照或黑暗的环境中都很有效。我们开发了一种新的等离子体纳米级多层材料,它可以在标准(可见)光下激活电子束,并开发了基于高功率脉冲磁控溅射的技术,可以在室温下在聚合物上生产这些材料。我们将研究生产材料和纳米柱所需的等离子体过程,它们对光活化的反应以及它们对微生物的影响。这将有助于我们开发一种具有成本效益的制造技术,通过升级工业中已有的涂层沉积和纳米图案化系统,实现大规模生产,并采用人工智能算法驱动的数字化系统控制。我们将与当地NHS医院信托一起,在门家具的金属板和医院表面(床,座位区)的聚合物板上试用这种材料。一旦成功,我们将在强大的抗菌材料及其制造方面取得一些最令人兴奋的新进展,并向完全有效的感染控制世界迈进一步。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time monitoring of plasma synthesis of functional materials by high power impulse magnetron sputtering and other PVD processes: towards a physics-constrained digital twin
通过高功率脉冲磁控溅射和其他 PVD 工艺实时监测功能材料的等离子体合成:走向物理约束的数字孪生
- DOI:10.1088/1361-6463/aca25a
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ehiasarian A
- 通讯作者:Ehiasarian A
Toward Fabrication of Devices Based on Graphene/Oxide Multilayers.
- DOI:10.1021/acsaelm.3c00341
- 发表时间:2023-06-27
- 期刊:
- 影响因子:4.7
- 作者:Wang, Yuxuan;Guerenneur, Anais;Ramadan, Sami;Huang, Jingle;Fearn, Sarah;Nabi, Nomaan;Klein, Norbert;Alford, Neil McN.;Petrov, Peter K.
- 通讯作者:Petrov, Peter K.
Temperature stability of individual plasmonic Au and TiN nanodiscs
- DOI:10.1364/ome.462582
- 发表时间:2022-09-01
- 期刊:
- 影响因子:2.8
- 作者:Bower, Ryan;Mcpolin, Cillian P. T.;Petrov, Peter K.
- 通讯作者:Petrov, Peter K.
Development of Nanopackaging for Storage and Transport of Loaded Lipid Nanoparticles.
- DOI:10.1021/acs.nanolett.3c01271
- 发表时间:2023-07-26
- 期刊:
- 影响因子:10.8
- 作者:Kaur, Apanpreet;Darvill, Daniel;Xiang, Shuning;Heng, Jerry Y. Y.;Petrov, Peter K.;Hoye, Robert L. Z.;Chen, Rongjun
- 通讯作者:Chen, Rongjun
Crystalline AuNP-Decorated Strontium Niobate Thin Films: Strain-Controlled AuNP Morphologies and Optical Properties for Plasmonic Applications.
- DOI:10.1021/acsanm.3c00934
- 发表时间:2023-07-14
- 期刊:
- 影响因子:5.9
- 作者:Yao, Qiaomu;Berenov, Andrey V. V.;Bower, Ryan;Zou, Bin;Xiao, Xiaofei;Alford, Neil M. M.;Oulton, Rupert F. M.;Petrov, Peter K. K.
- 通讯作者:Petrov, Peter K. K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arutiun Ehiasarian其他文献
Quasi-industrial accelerated testing of a HIPIMS deposited nano-layered CrAlYN/CrN coating for improving hot forging die life of nitrided H13 steel
热等静压离子镀沉积纳米层 CrAlYN/CrN 涂层的准工业加速试验以提高氮化 H13 钢热锻模寿命
- DOI:
10.1016/j.jmapro.2025.03.106 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:6.800
- 作者:
Christopher Fleming;William Kerr;Bhaskaran Krishnamurthy;Liza Hall;Arunprabhu Sugumaran;Arutiun Ehiasarian;Papken Hovsepian - 通讯作者:
Papken Hovsepian
Arutiun Ehiasarian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arutiun Ehiasarian', 18)}}的其他基金
High Efficiency CuInSe2 Photovoltaic Modules Deposited at Low Temperature by High Power Impulse Magnetron Sputtering (HIPIMS)
高功率脉冲磁控溅射 (HIPIMS) 低温沉积高效 CuInSe2 光伏组件
- 批准号:
EP/J011398/1 - 财政年份:2012
- 资助金额:
$ 99.27万 - 项目类别:
Research Grant
Fundamentals of High Power Impulse Magnetron Sputtering (HIPIMS) - Plasma Studies and Materials Synthesis
高功率脉冲磁控溅射 (HIPIMS) 基础知识 - 等离子体研究和材料合成
- 批准号:
EP/D049202/1 - 财政年份:2006
- 资助金额:
$ 99.27万 - 项目类别:
Research Grant
相似海外基金
SBIR Phase II: In-vivo validation of a volume-manufacturable and factory-calibrated wearable NT-proBNP monitoring system for heart failure treatment
SBIR II 期:用于心力衰竭治疗的可批量生产和工厂校准的可穿戴 NT-proBNP 监测系统的体内验证
- 批准号:
2335105 - 财政年份:2024
- 资助金额:
$ 99.27万 - 项目类别:
Cooperative Agreement
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 99.27万 - 项目类别:
Standard Grant
Understanding Mixed-Mode Fracture Mechanics in Additively Manufacturable Functionally Graded Microcellular Solids
了解可增材制造的功能梯度微孔固体中的混合模式断裂力学
- 批准号:
2317406 - 财政年份:2023
- 资助金额:
$ 99.27万 - 项目类别:
Standard Grant
Study on calibration protocol for practically manufacturable MEMS heat flux sensor using thermal response
利用热响应对可实际制造的MEMS热通量传感器进行校准协议的研究
- 批准号:
23K13268 - 财政年份:2023
- 资助金额:
$ 99.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245299 - 财政年份:2023
- 资助金额:
$ 99.27万 - 项目类别:
Standard Grant
Fabrication of 2D material devices using large-area manufacturable methods
使用大面积可制造方法制造 2D 材料器件
- 批准号:
RGPIN-2017-05810 - 财政年份:2022
- 资助金额:
$ 99.27万 - 项目类别:
Discovery Grants Program - Individual
Robust manufacturable antibacterial surfaces enabled by superhard plasmon-enhanced photocatalytic materials.
由超硬等离子体增强光催化材料实现的坚固的可制造抗菌表面。
- 批准号:
EP/W012197/1 - 财政年份:2022
- 资助金额:
$ 99.27万 - 项目类别:
Research Grant
Stiffness tailoring for improved aeroelastic performance of manufacturable composite wings.
刚度定制可提高可制造复合材料机翼的气动弹性性能。
- 批准号:
2559479 - 财政年份:2021
- 资助金额:
$ 99.27万 - 项目类别:
Studentship
Fabrication of 2D material devices using large-area manufacturable methods
使用大面积可制造方法制造 2D 材料器件
- 批准号:
RGPIN-2017-05810 - 财政年份:2021
- 资助金额:
$ 99.27万 - 项目类别:
Discovery Grants Program - Individual
FMSG: DNA-based Assembly of Manufacturable NanoElectronic Device
FMSG:基于 DNA 的可制造纳米电子器件组装
- 批准号:
2036865 - 财政年份:2020
- 资助金额:
$ 99.27万 - 项目类别:
Standard Grant