New Frontiers in Symplectic Topology
辛拓扑的新领域
基本信息
- 批准号:EP/W015749/1
- 负责人:
- 金额:$ 83.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Symplectic geometry originated in the study of classical mechanics as a general setting for studying conservative dynamics. Surprisingly, in the last few decades, mathematicians have found symplectic structures are relevant in many areas very far from mechanics, including gauge theory, algebraic geometry, representation theory and string theory. The proposed research uses symplectic geometry as a bridge between some of these disparate areas of mathematics.The proposal has three strands, which are quite distinct in nature, but are tied together by ideas from symplectic geometry.In the first strand of the research, we examine a very curious conjecture at the interface between Hamiltonian dynamics and birational geometry. In birational geometry, there is an important class of singular spaces called "compound Du Val (cDV) singularities" which arise in Mori's famous minimal model program for classifying 3-dimensional algebraic varieties. If you look very close to these cDV singularities, you find a natural class of dynamical systems (Reeb flows on the link) and it seems in examples that the dynamics of the Reeb flow tells you about whether you can resolve the singularity by introducing only 1-dimensional curves. We aim to prove a strong version of this conjecture, first in a simple case (compound A_n) and then in general.In the second strand of the research, we study a class of 4-dimensional spaces from algebraic geometry (algebraic surfaces of general type). Surfaces of general type have very complicated topology, and provide a wonderful testing ground for our understanding of 4-dimensional space. There has been a lot of progress recently in understanding how such spaces can degenerate, and we want to use this to answer some long-open topological questions about these 4-dimensional spaces.In the third strand of the research, our goal is to give a construction of topological invariants of low-dimensional manifolds using algebraic geometry. Our approach is informed by the homological mirror symmetry conjecture which relates symplectic geometry to algebraic geometry.
辛几何起源于经典力学的研究,作为研究保守动力学的一般背景。令人惊讶的是,在过去的几十年里,数学家们发现辛结构在许多远离力学的领域都是相关的,包括规范理论,代数几何,表示论和弦理论。辛几何是数学中的一个重要分支,它是数学中的一个重要分支。辛几何是数学中的一个重要分支,它是数学中的一个重要分支。辛几何是数学中的一个重要分支,它是数学中的一个重要分支。在辛几何的基础上,我们提出了一个新的概念,即在哈密顿动力学和双有理几何之间的一个非常奇怪的猜想。在双有理几何中,有一类重要的奇异空间称为“复合杜瓦尔(cDV)奇异点”,它出现在Mori著名的最小模型程序中,用于分类三维代数簇。如果你仔细观察这些cDV奇点,你会发现一类自然的动力系统(链接上的Reeb流),在例子中,Reeb流的动力学似乎告诉你是否可以通过只引入一维曲线来解决奇点。我们的目标是证明这个猜想的一个强版本,首先在一个简单的情况下(复合A_n),然后在一般情况下.在研究的第二链,我们研究了一类四维空间的代数几何(代数曲面的一般类型).一般类型的曲面具有非常复杂的拓扑结构,为我们理解四维空间提供了一个极好的实验场。近年来,我们对四维空间如何退化的认识有了很大的进展,我们希望利用这一点来回答一些关于四维空间的长期开放的拓扑问题。在研究的第三个方面,我们的目标是利用代数几何来构造低维流形的拓扑不变量。我们的方法是通知同调镜像对称猜想,涉及辛几何代数几何。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Evans其他文献
Potentially Inappropriate Medications in Nursing Homes: Sources and Correlates
疗养院中可能不适当的药物:来源和相关性
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
S. Balogun;M. Preston;Jonathan Evans - 通讯作者:
Jonathan Evans
Comment on ‘Examining the variation of soil moisture from cosmic-ray neutron probes footprint: experimental results from a COSMOS-UK site’ by Howells, O.D., Petropoulos, G.P., et al., Environ Earth Sci 82, 41 (2023)
对 Howells, O.D.、Petropoulos, G.P. 等人的“检查宇宙射线中子探测器足迹中土壤湿度的变化:来自 COSMOS-UK 站点的实验结果”的评论,Environ Earth Sci 82, 41 (2023)
- DOI:
10.1007/s12665-023-11186-6 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
L. Scheiffele;M. Schrön;M. Köhli;Katya Dimitrova;Daniel Altdorff;Trenton. E. Franz;R. Rosolem;Jonathan Evans;J. Blake;H. Bogena;David McJannet;G. Baroni;Darin Desilets;S. Oswald - 通讯作者:
S. Oswald
Brief report: Prevalence of post-traumatic stress disorder symptoms after severe traumatic brain injury in a representative community sample
简要报告:代表性社区样本中严重创伤性脑损伤后创伤后应激障碍症状的患病率
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:1.9
- 作者:
W. H. Williams;Jonathan Evans;Barbara A. Wilson;Paul Needham - 通讯作者:
Paul Needham
Rationality and the illusion of choice
理性与选择的幻觉
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.8
- 作者:
Jonathan Evans - 通讯作者:
Jonathan Evans
COGNITIVE REHABILITATION: AN INTEGRATIVE NEUROPSYCHOLOGICAL APPROACH
认知康复:一种综合的神经心理学方法
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Jonathan Evans - 通讯作者:
Jonathan Evans
Jonathan Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Evans', 18)}}的其他基金
Towards diversity, equality and sustainability in streaming: Translating British media in Korea and Korean media in the UK
实现流媒体的多样性、平等和可持续性:在韩国翻译英国媒体和在英国翻译韩国媒体
- 批准号:
ES/W01081X/1 - 财政年份:2022
- 资助金额:
$ 83.63万 - 项目类别:
Research Grant
Singularities and symplectic topology
奇点和辛拓扑
- 批准号:
EP/P02095X/2 - 财政年份:2019
- 资助金额:
$ 83.63万 - 项目类别:
Research Grant
MOSAIC Digital Environment Feasibility Study
MOSAIC数字环境可行性研究
- 批准号:
NE/T005637/1 - 财政年份:2019
- 资助金额:
$ 83.63万 - 项目类别:
Research Grant
Singularities and symplectic topology
奇点和辛拓扑
- 批准号:
EP/P02095X/1 - 财政年份:2017
- 资助金额:
$ 83.63万 - 项目类别:
Research Grant
HyCRISTAL: Integrating Hydro-Climate Science into Policy Decisions for Climate-Resilient Infrastructure and Livelihoods in East Africa
HyCRISTAL:将水文气候科学纳入东非气候适应性基础设施和生计的政策决策中
- 批准号:
NE/M020363/1 - 财政年份:2015
- 资助金额:
$ 83.63万 - 项目类别:
Research Grant
Symplectic Cobordism Relations on Contact Manifolds
接触流形上的辛共边关系
- 批准号:
EP/K011588/1 - 财政年份:2013
- 资助金额:
$ 83.63万 - 项目类别:
Research Grant
Disruption to the development of maternal sensitivity: the impact of depression and alcohol use during pregnancy on mother-infant interactions.
母亲敏感性发展的破坏:怀孕期间抑郁和饮酒对母婴互动的影响。
- 批准号:
ES/I004823/1 - 财政年份:2010
- 资助金额:
$ 83.63万 - 项目类别:
Research Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Frontiers of Mathematics in China
- 批准号:11024802
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:专项基金项目
相似海外基金
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
- 批准号:
2415310 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Standard Grant
New Frontiers for Anonymous Authentication
匿名身份验证的新领域
- 批准号:
DE240100282 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Standard Grant
New Frontiers in Large-Scale Polynomial Optimisation
大规模多项式优化的新领域
- 批准号:
DE240100674 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Discovery Early Career Researcher Award
Mapping the Frontiers of Private Property in Australia
绘制澳大利亚私有财产的边界
- 批准号:
DP240100395 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Discovery Projects
RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
- 批准号:
2342349 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Continuing Grant
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
- 批准号:
2347894 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Standard Grant
Conference: USA-UK-China-Israel Workshop on Frontiers in Ecology and Evolution of Infectious Diseases
会议:美国-英国-中国-以色列生态学和传染病进化前沿研讨会
- 批准号:
2406564 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Standard Grant
Conference: FRONTIERS OF ENGINEERING (2024 US FOE, 2024 China-America FOE, and 2025 German-American FOE)
会议:工程前沿(2024年美国之敌、2024年中美之敌、2025年德美之敌)
- 批准号:
2405026 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Standard Grant
Frontiers in gravitational wave astronomy (FRoGW)
引力波天文学前沿(FRoGW)
- 批准号:
EP/Y023706/1 - 财政年份:2024
- 资助金额:
$ 83.63万 - 项目类别:
Fellowship