Predictive Multiscale Modelling Protocol of Adiabatic Shear Band Initiation in Manufacturing and Aerospace Materials
制造和航空航天材料中绝热剪切带引发的预测多尺度建模协议
基本信息
- 批准号:EP/W01579X/1
- 负责人:
- 金额:$ 35.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The extremely narrow bands of localised shear deformation known as Adiabatic Shear Bands (ASBs) appear in metals and alloys subject to intense, high strain rate loading such as ballistic impacts or high rate manufacturing. Despite their reduced dimensions, the bands act as dramatic weak spots because their microstructure and morphology is radically different from the surrounding material. ASBs form suddenly and unexpectedly, and predicting them is difficult. Their sudden appearance while in-service invariably leads to the catastrophic failure of aerospace and defence systems (turbine blades, armour,...). Equally, ASBs dominate high rate manufacturing (machining, additive manufacturing, forming): efficiency calls for the sort of high rate, fast loads that tend to introduce undesired ASBs, greatly weakening the manufactured piece be- low specification. Owing to the huge volumes of manufactured pieces and to the high cost of design cycles in the defence and aerospace industries, predictive methodologies able to address ASB formation would lead to vast cost savings and efficiencies. Despite decades of research, the micro- and mesoscopic processes that cause ASB remain elusive. Whereas their growth and ultimate failure are relatively well-understood as thermomechanical instabilities, ASB initiation takes places at pico- and sub-micron scales that fall beyond current experimental measurement capabilities. Equally so, the inherently dynamic (time-dependent) loading conditions under which ASBs form have hitherto precluded the theoretical modelling of the phenomenon.Across three work packages (WP), this project addresses the inherent difficulties in modelling the initiation of ASBs by developing an ambitious, truly dynamic, multiscale modelling protocol with which to study and predict the conditions (loading, composition, microstructure) that promote the onset of ASBs in cubic and hexagonal metals. WP1 Microscale delivers a fundamental understanding of the physical source of the instability that gives rise to ASBs, by employ atomistic models (MD & lattice dynamics) with which to study sources of dislocation generation and dislocation motion under loads known to promote ASB. WP2 Mesoscale develops an entirely new formulation of thermo-elastodynamic dislocation dynamics (DD) with which to model ASB initiation and emergence at the mesoscale; this formulation addresses all current modelling limitations unable to account for the materials' inertia and thermal effects long since postulated to play a dominant role in the initiation of ASBs. WP3 Multiscale then combines WP1 and WP2 to develop a predictive multiscale model for ASB with which to study formation conditions (loading, composition, microstructure) in target metallic systems (Ti6Al4V, W, Al) of high scientific interest and industrial relevance. The resulting modelling protocol will enable the study of ASBs at the mesoscale for the first time, and produce a methodology with which to (1) predict and diagnose ASB failure in metallic systems, and (2) guide materials selection so as to select the most desirable microstructures with which to avoid or promote ASB formation. These tools will streamline the design cycle of aerospace and defence pieces subject to impacts, and optimise manufacturing operations reliant on minimising ASB formation (additive manufacturing, machining).
被称为绝热剪切带(ASB)的局部剪切变形的极窄带出现在受到强烈的高应变率载荷(例如弹道冲击或高速制造)的金属和合金中。尽管它们的尺寸减小了,但这些带作为显著的弱点,因为它们的微观结构和形态与周围的材料完全不同。ASB的形成是突然和出乎意料的,预测它们是困难的。它们在服役中的突然出现总是导致航空航天和防御系统(涡轮机叶片、装甲.)的灾难性故障。同样,ASB主导高速率制造(机加工、增材制造、成形):效率要求高速率、快速加载,这往往会引入不期望的ASB,大大削弱了所制造的零件的低规格。由于国防和航空航天工业中制造的零件数量巨大,设计周期成本高,因此能够解决ASB形成的预测方法将节省大量成本并提高效率。尽管经过几十年的研究,导致ASB的微观和介观过程仍然难以捉摸。尽管它们的生长和最终失效被相对较好地理解为热机械不稳定性,但ASB引发发生在超出当前实验测量能力的皮科和亚微米尺度上。同样,内在的动态迄今为止,ASB形成的(随时间变化的)载荷条件排除了对这一现象的理论建模。本项目通过三个工作包(WP),通过开发一个雄心勃勃的,真正动态的,多尺度的建模协议来研究和预测条件,解决了建模ASB启动的固有困难(负载、组成、微观结构),其促进立方和六方金属中ASB的开始。WP 1 Microscale通过采用原子模型(MD和晶格动力学)来研究已知促进ASB的负载下位错产生和位错运动的来源,从而对引起ASB的不稳定性的物理来源有了基本的了解。WP 2 Mesoscale开发了一种全新的热弹性动力学位错动力学(DD)公式,用于模拟中尺度ASB的启动和出现;该公式解决了所有当前的建模限制,无法解释长期以来被假定为在ASB启动中起主导作用的材料惯性和热效应。WP 3多尺度然后结合WP 1和WP 2开发ASB的预测多尺度模型,用于研究具有高度科学兴趣和工业相关性的目标金属系统(Ti6 Al 4V,W,Al)的形成条件(负载,成分,微观结构)。由此产生的建模协议将首次在中尺度上对ASB进行研究,并产生一种方法,用于(1)预测和诊断金属系统中的ASB故障,以及(2)指导材料选择,以选择最理想的微观结构,从而避免或促进ASB的形成。这些工具将简化航空航天和国防部件的设计周期,并优化依赖于最小化ASB形成的制造操作(增材制造,机加工)。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Full derivation of the ellipsoidal inclusion's moments, and tables with low order results from The multipolar elastic fields of ellipsoidal and polytopal plastic inclusions
椭圆体夹杂物矩的完整推导,以及来自椭圆体和多面塑性夹杂物的多极弹性场的低阶结果表
- DOI:10.6084/m9.figshare.23978136
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gurrutxaga-Lerma B
- 通讯作者:Gurrutxaga-Lerma B
The multipolar elastic fields of ellipsoidal and polytopal plastic inclusions
- DOI:10.1098/rspa.2023.0214
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:B. Gurrutxaga-Lerma
- 通讯作者:B. Gurrutxaga-Lerma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benat Gurrutxaga Lerma其他文献
Benat Gurrutxaga Lerma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
$ 35.47万 - 项目类别:
Fellowship
Mechanistic Multiscale Modelling Of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
- 批准号:
EP/X032019/1 - 财政年份:2024
- 资助金额:
$ 35.47万 - 项目类别:
Research Grant
Unlocking self-healing bio-concrete through multiscale modelling
通过多尺度建模解锁自愈生物混凝土
- 批准号:
DP240100851 - 财政年份:2024
- 资助金额:
$ 35.47万 - 项目类别:
Discovery Projects
Mechanistic Multiscale Modelling of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
- 批准号:
EP/X031969/1 - 财政年份:2024
- 资助金额:
$ 35.47万 - 项目类别:
Research Grant
Multiscale modelling of systems with complex microscale detail
具有复杂微尺度细节的系统的多尺度建模
- 批准号:
DP220103156 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Discovery Projects
Bottom-up multiscale modelling of expansive soils in natural environments
自然环境中膨胀土的自下而上多尺度建模
- 批准号:
FT220100515 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
ARC Future Fellowships
Multiscale mathematical modelling to gain insights into hepatitis viruses
多尺度数学建模以深入了解肝炎病毒
- 批准号:
DE220100284 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Discovery Early Career Researcher Award
Multiscale modelling of the microstructural evolution of nervous tissues through high-performance computing
通过高性能计算对神经组织微观结构演化进行多尺度建模
- 批准号:
EP/Y001583/1 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Research Grant
Aviation-to-Grid: Grid flexibility through multiscale modelling and integration of power systems with electrified air transport
航空到电网:通过多尺度建模以及电力系统与电气化航空运输的集成实现电网灵活性
- 批准号:
EP/W028905/1 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Research Grant
Multiscale dynamical system modelling to understand resilience in brain aging and dementia
多尺度动力系统建模以了解大脑衰老和痴呆症的恢复能力
- 批准号:
485781 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Operating Grants