Mellin motives, periods and high energy physics

梅林的动机、周期和高能物理学

基本信息

  • 批准号:
    EP/W020793/1
  • 负责人:
  • 金额:
    $ 40.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The proposed research lies at the intersection of theoretical mathematics and particle physics. It involves the study of a particular class of numbers called periods, of which pi is the most famous example. Periods are some of the most frequently occurring quantities in mathematics. Their name comes from their origin in the 17th century, when Galilei studied the amount of time it takes a pendulum to complete a swing, and Kepler asked the same question about a planet travelling around the Sun. In modern mathematics, periods are defined much more generally; they play an essential role in many central questions in the classical fields of geometry and number theory. In the proposed research I will work to uncover and study new structures which periods satisfy. Particle physics comes into play via another class of numbers, called Feynman integrals, which are laboriously computed by physicists in order to make predictions for particle collider experiments such as the ones performed in the Large Hadron Collider at CERN. These experiments are necessary for validating existing particle physics theories or finding illuminating discrepancies in them, and have previously led to the discovery of new elementary particles such as the Higgs boson. The difficulty in computing Feynman integrals thus presents a major obstacle for advancements in the field. Fortunately, Feynman integrals are examples of periods, and this project involves applying tools from algebraic geometry to answer questions about their structure, in particular the structure captured by an object called the Cosmic Galois group. This work will help physicists compute Feynman integrals, expanding the scope of physical processes which are possible to predict via quantum field theory. In addition, patterns encountered by physicists can help uncover structures that hold for periods in general, which, in turn, can be used to solve problems in pure mathematics. It is this interplay of mathematics and physics that makes the proposed research during the fellowship particularly exciting.
拟议的研究位于理论数学和粒子物理学的交叉点。它涉及对称为周期的特定数字类别的研究,其中 pi 是最著名的例子。周期是数学中最常见的数量之一。它们的名字来源于 17 世纪,当时伽利略研究了钟摆完成一次摆动所需的时间,开普勒也对围绕太阳运行的行星提出了同样的问题。在现代数学中,周期的定义更加普遍。它们在几何和数论经典领域的许多核心问题中发挥着至关重要的作用。在拟议的研究中,我将致力于发现和研究周期满足的新结构。粒子物理学通过另一类称为费曼积分的数字发挥作用,这些数字是由物理学家费力计算的,以便对粒子对撞机实验(例如在欧洲核子研究中心大型强子对撞机中进行的实验)进行预测。这些实验对于验证现有的粒子物理理论或发现其中有启发性的差异是必要的,并且之前已经导致了希格斯玻色子等新基本粒子的发现。因此,计算费曼积分的困难成为该领域进步的主要障碍。幸运的是,费曼积分是周期的例子,这个项目涉及应用代数几何的工具来回答有关其结构的问题,特别是被称为宇宙伽罗瓦群的物体捕获的结构。这项工作将帮助物理学家计算费曼积分,扩大可以通过量子场论预测的物理过程的范围。此外,物理学家遇到的模式可以帮助揭示一般周期内成立的结构,进而可以用来解决纯数学中的问题。正是数学和物理的相互作用使得奖学金期间提出的研究特别令人兴奋。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matija Tapuskovic其他文献

Matija Tapuskovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Understanding the motives and consequences of parents' educational investment : Competition, Parental Aversion, and Intergenerational mobility.
了解父母教育投资的动机和后果:竞争、父母厌恶和代际流动。
  • 批准号:
    24K16383
  • 财政年份:
    2024
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
  • 批准号:
    2401025
  • 财政年份:
    2024
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Standard Grant
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
  • 批准号:
    23H01067
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Children's Choice of Residence and Intra-Family Division of Bequests in Strategic Bequest Motives: Who Will Inherit the House and Take Care of the Parents?
战略性遗赠动机中子女的居住地选择与家庭内部遗赠分割:谁将继承房屋并照顾父母?
  • 批准号:
    23K01438
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hitting Close to Home: A Multi-Method Investigation of Neighborhood Characteristics and Drinking Motives on Alcohol-Related Health Disparities
切中要害:对社区特征和饮酒动机对酒精相关健康差异的多方法调查
  • 批准号:
    10748631
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
  • 批准号:
    2153059
  • 财政年份:
    2022
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Continuing Grant
p-Adic variation of motives
动机的 p-Adic 变化
  • 批准号:
    RGPIN-2022-04711
  • 财政年份:
    2022
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Discovery Grants Program - Individual
Research on Motives and Conditions for Development of Rural Community Resources by Agricultural Corporations
农业企业开发农村社区资源的动因与条件研究
  • 批准号:
    22K05872
  • 财政年份:
    2022
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scholars' Award: Human Motives - Egoism, hedonism, and the science of affect
学者奖:人类动机——利己主义、享乐主义和情感科学
  • 批准号:
    2143473
  • 财政年份:
    2022
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Standard Grant
Social anxiety and coping motivated cannabis use: The moderating effect of negative urgency
社交焦虑和应对动机的大麻使用:负面紧迫感的调节作用
  • 批准号:
    466543
  • 财政年份:
    2021
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了