Nonparametric regression on implicit manifold of high dimensional point cloud
高维点云隐式流形的非参数回归
基本信息
- 批准号:EP/W021595/1
- 负责人:
- 金额:$ 9.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a variety of fields, from biology, life science, to environmental science, one often encounters high-dimensional data (e.g., 'point cloud data') perturbed by some high-dimensional noise but cantering around some lower-dimensional manifolds. In more precise mathematical terms, manifolds are topological spaces equipped with some differential/smooth structure, the geometry of which is in general different from the usual Euclidean geometry. Naively applying traditional multivariate analysis to manifold-valued data that ignores the geometry of the space can potentially lead to highly misleading predictions and inferences. There is increasing interest in the problem of nonparametric regression with high-dimensional predictors. Gaussian Processes (GP) are among the most powerful tools in statistics and machine learning for regression and optimisation with Euclidean predictors. However, if the predictors locate on a manifold, traditional smoothing or modelling methods like GP that do not respect the intrinsic geometry of the space and the boundary constraints, produce poor results. One of the paramount challenges in developing GP models on manifold is the difficulty in specifying the covariance structure via constructing valid and computable covariance kernels on manifolds. In PI's prior and recent work, the heat kernel is employed to construct the intrinsic Gaussian process (In-GP) on complex constrained domain. Although the heat kernel provides a natural and canonical choice theoretically, it is analytically intractable to directly evaluate. Alternatively, it can be estimated as the transition density of the Brownian Motion (BM) on the manifold. This preliminary work has been applied to model the chlorophyll concentration levels in Aral Sea. This method is only applicable when the geometry of the manifold is known. For example, the mapping from longitude and latitude to the sphere in R3 is known. However, in modern big data analysis, the data in the point cloud, often high dimensional, are not directly observed on the manifolds, instead they are observed in a potentially high-dimensional ambient space but concentrate around some unknown lower dimensional structure. One needs to learn this geometry before utilizing it for inference. The objective of this proposal is to fill a critical gap in model structure and inference for undefined manifolds in high dimension point clouds, by constructing the intrinsic Gaussian processes. We will use the Bayesian dimension reduction method to learn the implicit manifold. The Bayesian models are extremely important for uncertainty quantification. The heat kernel can be estimated as the transition density of the BM on the learned manifold. This framework will allow us to build the In-GP regression models on point cloud. The intrinsic GP on point cloud can incorporate fully the intrinsic geometry of the learned manifold for inference while respecting the potentially complex interior structure and boundary.
在从生物学、生命科学到环境科学的各种领域中,人们经常遇到高维数据(例如,“点云数据”)受到一些高维噪声的扰动,但围绕一些低维流形运行。在更精确的数学术语中,流形是配备了一些微分/光滑结构的拓扑空间,其几何通常不同于通常的欧几里得几何。天真地将传统的多变量分析应用于流形值数据,忽略了空间的几何形状,可能会导致高度误导的预测和推断。具有高维预测变量的非参数回归问题越来越受到人们的关注。高斯过程(GP)是统计学和机器学习中最强大的工具之一,用于回归和优化欧几里得预测器。然而,如果预测位于流形上,传统的平滑或建模方法,如GP,不尊重空间的内在几何形状和边界约束,产生差的结果。在流形上开发GP模型的最大挑战之一是难以通过构造流形上有效且可计算的协方差核来指定协方差结构。在PI之前和最近的工作中,热核被用来构造复杂约束域上的内在高斯过程(In-GP)。虽然热核在理论上提供了一个自然和规范的选择,但直接评估它在分析上是困难的。或者,它可以被估计为布朗运动(BM)在流形上的转移密度。这一初步工作已用于模拟咸海叶绿素浓度水平。这种方法只适用于已知流形几何的情况。例如,已知从经度和纬度到R3中的球面的映射。然而,在现代大数据分析中,点云中的数据(通常是高维的)不是直接在流形上观察到的,而是在潜在的高维环境空间中观察到的,而是集中在一些未知的低维结构周围。在利用它进行推理之前,需要学习这种几何。该方案的目的是通过构造内禀高斯过程来填补高维点云中未定义流形的模型结构和推理的关键空白。我们将使用贝叶斯降维方法来学习隐流形。贝叶斯模型对于不确定性量化非常重要。热核可以被估计为学习流形上BM的过渡密度。该框架将允许我们在点云上构建In-GP回归模型。点云上的内在GP可以完全结合学习流形的内在几何进行推理,同时考虑潜在的复杂内部结构和边界。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extrinsic Bayesian Optimization on Manifolds
- DOI:10.3390/a16020117
- 发表时间:2023-02
- 期刊:
- 影响因子:2.3
- 作者:Yi-Zheng Fang;Mu Niu;P. Cheung;Lizhen Lin
- 通讯作者:Yi-Zheng Fang;Mu Niu;P. Cheung;Lizhen Lin
Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic Metrics
- DOI:10.48550/arxiv.2301.06533
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Mu Niu;Zhenwen Dai;P. Cheung;Yizhu Wang
- 通讯作者:Mu Niu;Zhenwen Dai;P. Cheung;Yizhu Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mu Niu其他文献
A Structural Learning Method for Graphical Models
图模型的结构学习方法
- DOI:
10.11159/icsta22.113 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Benjamin Szili;Mu Niu;Tereza Neocleous - 通讯作者:
Tereza Neocleous
Intrinsic Bayesian Optimisation on Complex Constrained Domain
复杂约束域上的内在贝叶斯优化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuan Liu;Mu Niu;Claire Miller - 通讯作者:
Claire Miller
Association of malnutrition risk evaluated by the geriatric nutritional risk index with post-stroke myocardial injury among older patients with first‑ever ischemic stroke
- DOI:
10.1186/s12877-025-05796-x - 发表时间:
2025-03-01 - 期刊:
- 影响因子:3.800
- 作者:
Mu Niu;Faqiang Zhang;Long Wang;Hao Yang;Lina Zhu;Supei Song - 通讯作者:
Supei Song
Parameter Inference in Differential Equation Models of Biopathways Using Time Warped Gradient Matching
使用时间扭曲梯度匹配的生物途径微分方程模型中的参数推断
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Mu Niu;Simon Rogers;M. Filippone;D. Husmeier - 通讯作者:
D. Husmeier
A quantified method for characterizing harmonic components from EMI spectrum
一种表征 EMI 频谱谐波分量的量化方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
D. Su;Kaixiang Zhu;Mu Niu;Xiaoxiao Wang - 通讯作者:
Xiaoxiao Wang
Mu Niu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
“合金标准”下测量误差校正模型及其在体育运动数据中的应用
- 批准号:10801133
- 批准年份:2008
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation Potential of Optimizing Regression Testing in Software Development
I-Corps:软件开发中优化回归测试的转化潜力
- 批准号:
2405355 - 财政年份:2024
- 资助金额:
$ 9.88万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 9.88万 - 项目类别:
Continuing Grant
CAREER: Enhanced Reliability and Efficiency of Software Regression Testing in the Presence of Flaky Tests
职业:在存在不稳定测试的情况下增强软件回归测试的可靠性和效率
- 批准号:
2338287 - 财政年份:2024
- 资助金额:
$ 9.88万 - 项目类别:
Continuing Grant
Phase 1: Metabolite biomarkers of future diabetes in South Asian women diagnosed with gestational diabetes Phase 2: Metabolite profiling of cardiometabolic risk factors in women and children in multiethnic Canadian and global birth cohorts
第一阶段:被诊断患有妊娠糖尿病的南亚女性未来糖尿病的代谢生物标志物第二阶段:加拿大和全球多种族出生队列中妇女和儿童心脏代谢危险因素的代谢分析
- 批准号:
491127 - 财政年份:2023
- 资助金额:
$ 9.88万 - 项目类别:
Fellowship Programs
A modeling approach for accurately predicting land use changes brought by human decisions
准确预测人类决策带来的土地利用变化的建模方法
- 批准号:
22KJ1856 - 财政年份:2023
- 资助金额:
$ 9.88万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 9.88万 - 项目类别:
Decay accelerating factor (CD55) protects against lectin pathway-mediated AT2 cell dysfunction in cigarette smoke-induced emphysema
衰变加速因子 (CD55) 可防止香烟烟雾引起的肺气肿中凝集素途径介导的 AT2 细胞功能障碍
- 批准号:
10737359 - 财政年份:2023
- 资助金额:
$ 9.88万 - 项目类别:
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
- 批准号:
10584028 - 财政年份:2023
- 资助金额:
$ 9.88万 - 项目类别:
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
- 批准号:
10641225 - 财政年份:2023
- 资助金额:
$ 9.88万 - 项目类别: