Magnetic Metasurfaces for Sustainable Information and Communication Technologies (MetaMagIC)

用于可持续信息和通信技术的磁性超表面 (MetaMagIC)

基本信息

  • 批准号:
    EP/W022680/1
  • 负责人:
  • 金额:
    $ 2.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The MetaMagIC project addresses current technological concerns about the energy efficiency and sustainability of magnetic devices in Information and Communication Technology systems. To increase the efficiency of these there is a strong drive to achieve the precise control of magnetic fields on much smaller microscopic length scales in order to concentrate them uniformly in small and targeted regions. There is also a need to move away from expensive rare-earth based magnetic materials whose supply could become uncertain in the near future. MetaMagIC offers a low cost and highly effective way to address both these key challenges in a ground-breaking approach based on spatially structured magnetic materials, so-called magnetic metasurfaces. Combining cutting-edge theory and modelling with state-of-the-art techniques for fabricating and characterising magnetic thin-film devices, we will address several important technological areas. We will greatly increase the sensitivity of magnetic sensors, such as those found in cars and smart meters, by incorporating them in specially designed planar metasurfaces. We will also use this approach to improve the efficiency of small energy harvesting structures that can extract enough energy from their environments to power small electronic devices. We will combine the field expulsion and concentration properties of metasurfaces to achieve much more efficient wireless charging of, for example, mobile phones. Finally we will use the high field saturation of the response of magnetic materials to design entirely new types of devices and protect very sensitive equipment like heart pacemakers from damage by high magnetic fields.
MetaMagIC项目解决了当前对信息和通信技术系统中磁性设备的能效和可持续性的技术关注。为了提高效率,人们强烈希望在更小的微观长度尺度上实现磁场的精确控制,以便将它们均匀地集中在小而有针对性的区域。还有必要放弃昂贵的稀土磁性材料,这些材料的供应在不久的将来可能会变得不确定。MetaMagIC提供了一种低成本和高效的方法来解决这两个关键挑战,这是一种基于空间结构磁性材料的开创性方法,即所谓的磁性亚表面。将尖端理论和建模与制造和表征磁性薄膜器件的最先进技术相结合,我们将讨论几个重要的技术领域。我们将极大地提高磁性传感器的灵敏度,例如汽车和智能电表中的传感器,将它们纳入专门设计的平面准表面。我们还将使用这种方法来提高小型能源收集结构的效率,这些结构可以从环境中提取足够的能量来为小型电子设备提供动力。我们将结合变形表面的场驱逐和集中特性来实现更高效的无线充电,例如移动电话。最后,我们将利用磁性材料响应的高场饱和度来设计全新类型的设备,并保护非常敏感的设备,如心脏起搏器,使其免受强磁场的损害。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High resolution magnetic microscopy based on semi-encapsulated graphene Hall sensors
  • DOI:
    10.1063/5.0097936
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Penglei Li;D. Collomb;Zhen Jieh Lim;Sara Dale;P. Shepley;G. Burnell;S. Bending
  • 通讯作者:
    Penglei Li;D. Collomb;Zhen Jieh Lim;Sara Dale;P. Shepley;G. Burnell;S. Bending
A simplified model for minor and major loop magnetic hysteresis and its application for inference of temperature in induction heated particle beds
小环和主环磁滞的简化模型及其在感应加热颗粒床温度推断中的应用
  • DOI:
    10.1088/1361-6463/acf13f
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noble J
  • 通讯作者:
    Noble J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Bending其他文献

Abstract Book; Mesoscopic Superconductivity & Vortex Imaging
摘要书;
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Bending
  • 通讯作者:
    Simon Bending
Presentations; Mesoscopic Superconductivity & Vortex Imaging
演示;
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Bending
  • 通讯作者:
    Simon Bending
Angular dependence of domain wall resistivity in artificial magnetic domain structures.
人工磁畴结构中畴壁电阻率的角度依赖性。
  • DOI:
    10.1103/physrevlett.97.206602
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    A. Aziz;Simon Bending;H. G. Roberts;S. Crampin;Peter J Heard;C. Marrows
  • 通讯作者:
    C. Marrows
Investigation of temperature dependent magnetic properties in irradiated Co/Pt multilayer devices using Extraordinary Hall effect measurements
使用非凡霍尔效应测量研究辐照 Co/Pt 多层器件中与温度相关的磁特性
Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate–TiO<sub>2</sub> film
  • DOI:
    10.1016/j.jelechem.2011.04.010
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Charles Y. Cummings;Jay D. Wadhawan;Takuya Nakabayashi;Masa-aki Haga;Liza Rassaei;Sara E.C. Dale;Simon Bending;Martin Pumera;Stephen C. Parker;Frank Marken
  • 通讯作者:
    Frank Marken

Simon Bending的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Bending', 18)}}的其他基金

Intrinsic Pinning in Magnetic Iron-Based Superconductors; a Route to High Critical Current Conductors at High Magnetic Fields
磁性铁基超导体的本征钉扎;
  • 批准号:
    EP/X015033/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Research Grant
Graphene nanosensors for scanning Hall microscopy and susceptometry
用于扫描霍尔显微镜和电纳测定法的石墨烯纳米传感器
  • 批准号:
    EP/R007160/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Research Grant
Free Access to Nanolithography & Supporting Processes, University of Bath
免费使用纳米光刻技术
  • 批准号:
    EP/K040324/1
  • 财政年份:
    2013
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J010626/1
  • 财政年份:
    2012
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Research Grant
Celebration of 100 Years of Superconductivity; Support for an International Workshop in Bath
庆祝超导 100 周年;
  • 批准号:
    EP/I011323/1
  • 财政年份:
    2011
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Research Grant
Current-driven Domain Wall Motion in Artificial Magnetic Domain Structures
人工磁畴结构中电流驱动的畴壁运动
  • 批准号:
    EP/G011230/1
  • 财政年份:
    2009
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Research Grant
Designer 3D Magnetic Mesostructures
设计师 3D 磁性细观结构
  • 批准号:
    EP/E039944/1
  • 财政年份:
    2007
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Research Grant
A Scanning Hall Probe Microscope for High Resolution milliKelvin Magnetic Imaging
用于高分辨率毫开尔文磁成像的扫描霍尔探针显微镜
  • 批准号:
    EP/D034264/1
  • 财政年份:
    2006
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
  • 批准号:
    2340782
  • 财政年份:
    2024
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Standard Grant
CAREER:Electrically Tunable van der Waals Optical Nanoantennas Photodetectors and Metasurfaces
职业:电可调谐范德华光学纳米天线光电探测器和超表面
  • 批准号:
    2340751
  • 财政年份:
    2024
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Continuing Grant
CAREER: Kirigami-Actuated Adaptive Metasurfaces with Dynamic Tunability enabled by 2D Materials
职业:由 2D 材料实现的具有动态可调性的剪纸驱动自适应超表面
  • 批准号:
    2239822
  • 财政年份:
    2023
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Continuing Grant
Conformable holographic metasurfaces for industrial imaging and sensing applications
适用于工业成像和传感应用的一致全息超表面
  • 批准号:
    2898395
  • 财政年份:
    2023
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Studentship
TERRAMETA: TERahertz ReconfigurAble METAsurfaces for ultra-high rate wireless communications
TERRAMETA:用于超高速无线通信的太赫兹可重构 META 表面
  • 批准号:
    10059839
  • 财政年份:
    2023
  • 资助金额:
    $ 2.07万
  • 项目类别:
    EU-Funded
Metasurfaces for Spatio-temporal Light Modulation
用于时空光调制的超表面
  • 批准号:
    EP/X018121/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Research Grant
Synthetic optical materials for photonic metasurfaces applications
用于光子超表面应用的合成光学材料
  • 批准号:
    2898400
  • 财政年份:
    2023
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Studentship
New development of smart terahertz reflectors by using vanadium-dioxide metasurfaces
利用二氧化钒超表面智能太赫兹反射器的新进展
  • 批准号:
    23H01468
  • 财政年份:
    2023
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TERRAMETA: TERahertz ReconfigurAble METAsurfaces for ultra-high rate wireless communications
TERRAMETA:用于超高速无线通信的太赫兹可重构 META 表面
  • 批准号:
    10061833
  • 财政年份:
    2023
  • 资助金额:
    $ 2.07万
  • 项目类别:
    EU-Funded
Contact-Free Actuation Enabled by Acoustic Metasurfaces
声学超表面实现无接触驱动
  • 批准号:
    2318094
  • 财政年份:
    2023
  • 资助金额:
    $ 2.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了