Designer 3D Magnetic Mesostructures

设计师 3D 磁性细观结构

基本信息

  • 批准号:
    EP/E039944/1
  • 负责人:
  • 金额:
    $ 59.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

In a remarkable recent paper Xiao et al. at Argonne National Laboratories demonstrated that 'architecture-tuneable' Pb mesostructures (samples whose dimensions lie between microscopic 'atomic' scales and macroscopic 'bulk' scales at which the specific geometry no longer plays a role for physical properties) can be grown by electrodeposition from lead salt solutions onto graphite substrates. Simply varying the electrode potentials allows an extraordinary variety of different sample morphologies to be realised, ranging from regular polyhedra and nanowires to multipods and 'snowflakes'. These structures are truly three-dimensional (3D) superconducting mesocrystals with few bulk defects and perfectly smooth faceted faces, whose magnetic properties are dominated by their size and shape. The same deposition method should be readily extendable to many ferromagnetic metals and alloys. For the first time it is now possible to controllably fabricate regular faceted 3D mesoscrystals without the disorder and rough surfaces/edges characteristic of lithographically-patterned thin film structures. Crucially, the dimensions of these 3D mesostructures are comparable with the relevant characteristic lengthscales found in ferromagnetism and superconductivity (e.g. ferromagnetic domain size and/or domain wall width or superconducting coherence length and/or magnetic field penetration depth) in contrast to widely studied nanoscale particles/clusters and nanowires. Competition between different processes as a function of the size and shape of these 3D structures should lead to rich new physical phenomena with strong potential for exploitation. In collaboration with the Argonne group we have shown that surface/shape effects can completely dominate the magnetisation of these materials, opening up the possibility of 'designing' crystals with desirable, exploitable properties. We propose to considerably extend the scope of this work within a collaboration between well established groups in electrochemistry and nanoscale physics at the University of Bath and theoreticians in Southampton and Antwerp. We plan to grow and investigate both superconducting and ferromagnetic mesocrystals with a wide range of morphologies, as well as hybrid ferromagnetic-superconductor core-shell structures and continuous hybrid networks. The most promising materials produced will be systematically characterised using Hall nanomagnetometry and/or magnetoresistance measurements. Experimental results will be interpreted by comparison with tailor-made state-of-the-art 3D micromagnetic simulations and/or solutions of the 3D Ginzburg-Landau equation. Opportunities for exploitation of these novel magnetic materials will also be identified and explored.
阿贡国家实验室的Xiao等人在最近的一篇引人注目的论文中证明,“结构可调”的Pb介观结构(尺寸介于微观“原子”尺度和宏观“体”尺度之间的样品,在这种尺度下,特定的几何形状不再对物理性质起作用)可以通过从铅盐溶液电沉积到石墨基底上来生长。简单地改变电极电位就可以实现各种不同的样品形态,从规则的多面体和纳米线到多脚和“雪花”。这些结构是真正的三维(3D)超导介晶,具有很少的体缺陷和完美光滑的小面,其磁性由其尺寸和形状决定。同样的沉积方法应该很容易扩展到许多铁磁金属和合金。对于第一次,现在可以可控地制造规则的刻面3D介晶,而没有光刻图案化的薄膜结构的无序和粗糙表面/边缘特性。至关重要的是,这些3D介观结构的尺寸与铁磁性和超导性中发现的相关特征长度尺度(例如铁磁畴尺寸和/或畴壁宽度或超导相干长度和/或磁场穿透深度)相比,与广泛研究的纳米级颗粒/簇和纳米线相比。作为这些3D结构的大小和形状的函数,不同过程之间的竞争应该会导致丰富的新物理现象,具有很强的开发潜力。在与阿贡小组的合作中,我们已经证明了表面/形状效应可以完全主导这些材料的磁化强度,从而开辟了“设计”具有理想的可开发特性的晶体的可能性。我们建议大大扩展这项工作的范围内,在巴斯大学和理论家在南安普顿和安特卫普的电化学和纳米物理学之间的合作。我们计划生长和研究具有各种形态的超导和铁磁介晶,以及混合铁磁超导核壳结构和连续混合网络。最有前途的材料生产将系统地使用霍尔纳米磁学和/或磁阻测量。实验结果将通过与定制的最先进的3D微磁模拟和/或3D Ginzburg-Landau方程的解决方案进行比较来解释。还将确定和探索利用这些新型磁性材料的机会。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Bending其他文献

Abstract Book; Mesoscopic Superconductivity & Vortex Imaging
摘要书;
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Bending
  • 通讯作者:
    Simon Bending
Presentations; Mesoscopic Superconductivity & Vortex Imaging
演示;
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Bending
  • 通讯作者:
    Simon Bending
Angular dependence of domain wall resistivity in artificial magnetic domain structures.
人工磁畴结构中畴壁电阻率的角度依赖性。
  • DOI:
    10.1103/physrevlett.97.206602
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    A. Aziz;Simon Bending;H. G. Roberts;S. Crampin;Peter J Heard;C. Marrows
  • 通讯作者:
    C. Marrows
Investigation of temperature dependent magnetic properties in irradiated Co/Pt multilayer devices using Extraordinary Hall effect measurements
使用非凡霍尔效应测量研究辐照 Co/Pt 多层器件中与温度相关的磁特性
Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate–TiO<sub>2</sub> film
  • DOI:
    10.1016/j.jelechem.2011.04.010
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Charles Y. Cummings;Jay D. Wadhawan;Takuya Nakabayashi;Masa-aki Haga;Liza Rassaei;Sara E.C. Dale;Simon Bending;Martin Pumera;Stephen C. Parker;Frank Marken
  • 通讯作者:
    Frank Marken

Simon Bending的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Bending', 18)}}的其他基金

Intrinsic Pinning in Magnetic Iron-Based Superconductors; a Route to High Critical Current Conductors at High Magnetic Fields
磁性铁基超导体的本征钉扎;
  • 批准号:
    EP/X015033/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Research Grant
Magnetic Metasurfaces for Sustainable Information and Communication Technologies (MetaMagIC)
用于可持续信息和通信技术的磁性超表面 (MetaMagIC)
  • 批准号:
    EP/W022680/1
  • 财政年份:
    2022
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Research Grant
Graphene nanosensors for scanning Hall microscopy and susceptometry
用于扫描霍尔显微镜和电纳测定法的石墨烯纳米传感器
  • 批准号:
    EP/R007160/1
  • 财政年份:
    2018
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Research Grant
Free Access to Nanolithography & Supporting Processes, University of Bath
免费使用纳米光刻技术
  • 批准号:
    EP/K040324/1
  • 财政年份:
    2013
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J010626/1
  • 财政年份:
    2012
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Research Grant
Celebration of 100 Years of Superconductivity; Support for an International Workshop in Bath
庆祝超导 100 周年;
  • 批准号:
    EP/I011323/1
  • 财政年份:
    2011
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Research Grant
Current-driven Domain Wall Motion in Artificial Magnetic Domain Structures
人工磁畴结构中电流驱动的畴壁运动
  • 批准号:
    EP/G011230/1
  • 财政年份:
    2009
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Research Grant
A Scanning Hall Probe Microscope for High Resolution milliKelvin Magnetic Imaging
用于高分辨率毫开尔文磁成像的扫描霍尔探针显微镜
  • 批准号:
    EP/D034264/1
  • 财政年份:
    2006
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Research Grant

相似国自然基金

锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
  • 批准号:
    JCZRLH202500778
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
  • 批准号:
    2025JJ60269
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
  • 批准号:
    2025JJ80409
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
  • 批准号:
    2025JJ70487
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

V-LF-Spiro3D: Low-field 3D magnetic resonance spirometry for advanced regional exploration of respiratory diseases
V-LF-Spiro3D:低场 3D 磁共振肺量计,用于呼吸系统疾病的高级区域探索
  • 批准号:
    10063498
  • 财政年份:
    2023
  • 资助金额:
    $ 59.45万
  • 项目类别:
    EU-Funded
Construction of 3D hierarchical vascular networks in a cm-sized liver tissue using magnetic fields
使用磁场在厘米大小的肝脏组织中构建 3D 分层血管网络
  • 批准号:
    23K13291
  • 财政年份:
    2023
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D Cine Magnetic Resonance Fingerprinting for Rapid Phenotyping of Cardiomyopathy
3D 电影磁共振指纹图谱用于心肌病的快速表型分析
  • 批准号:
    10626789
  • 财政年份:
    2022
  • 资助金额:
    $ 59.45万
  • 项目类别:
Multiscale 3D Magnetic Imaging with reflection-mode soft x-ray absorption spectroscopy
采用反射模式软 X 射线吸收光谱的多尺度 3D 磁成像
  • 批准号:
    22K04920
  • 财政年份:
    2022
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comparison of 3D phase-resolved functional lung (PREFUL) and Hyperpolarized Xenon Gas Magnetic Resonance Imaging (MRI) Ventilation Distributions in Pediatric Cystic Fibrosis Lung Disease
3D 相位分辨功能性肺 (PREFUL) 和超极化氙气磁共振成像 (MRI) 通气分布在小儿囊性纤维化肺病中的比较
  • 批准号:
    559116-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
3D High Resolution Magnetic Resonance Fingerprinting for Prostate Cancer
前列腺癌 3D 高分辨率磁共振指纹识别
  • 批准号:
    10275705
  • 财政年份:
    2021
  • 资助金额:
    $ 59.45万
  • 项目类别:
3D High Resolution Magnetic Resonance Fingerprinting for Prostate Cancer
前列腺癌 3D 高分辨率磁共振指纹识别
  • 批准号:
    10453686
  • 财政年份:
    2021
  • 资助金额:
    $ 59.45万
  • 项目类别:
Creation of 3D stereolithography technology by non-contact magnetic support operation
通过非接触式磁支撑操作创建 3D 立体光刻技术
  • 批准号:
    21H01308
  • 财政年份:
    2021
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of passive stabilization of plasma position by saddle-coil 3D magnetic field
通过鞍形线圈 3D 磁场被动稳定等离子体位置的研究
  • 批准号:
    21H01061
  • 财政年份:
    2021
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of 3D nanostructured magnetic materials that can obtain high isotropic magnetic force
开发可以获得高各向同性磁力的3D纳米结构磁性材料
  • 批准号:
    21K18994
  • 财政年份:
    2021
  • 资助金额:
    $ 59.45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了