Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
基本信息
- 批准号:EP/W022923/1
- 负责人:
- 金额:$ 32.36万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Consider a lattice consisting of vertices and edges. To each edge we assign a randomly chosen positive number called conductance. Now consider a random walk (or particle) moving along the vertices of the lattice in such a way that the probability to jump from one vertex to one of its neighbours is proportional to the conductance on the connecting edge. This model of a reversible random walk in a random environment is known in the literature as the random conductance model. Random walks in random environments have been at the centre of the interest in probability theory for several decades. One motivation originates from applications in physics, material science or biology, as for instance the study of transport processes through porous media or in composite materials. A common characteristics of such heterogeneous media is the presence of strong spatial inhomogeneities on microscopic scales. Since the microscopic structure can often be characterised only statistically, such transport processes in a heterogeneous medium are naturally modelled by random walks in random environment. When studying such random walks on macroscopic length and time-scales, which are much larger compared to the microscopic heterogeneities, one typically observes that the random irregular microstructures are averaged out and homogenisation effects arise, so that the effective macroscopic behaviour can be described by a much simpler stochastic process in a homogeneous environment.Mathematically, it is now of interest under which conditions on the random medium such homogenisation effects occur. This can be formulated in terms of scaling limit results for the random walk. In this project we aim to establish such scaling limits for random walks under random conductances with long range jumps, i.e. the random walk is not only allowed to jump to one of its neighbours but also to other vertices further away. As the underlying set of vertices we consider (1) the Euclidean lattice and (2) the realisation of a point process in the Euclidean space. We also aim to study the associated partial differential differential equations (PDE) involving non-local discrete operators describing the transition probabilities of such random walks. In fact, random conductance models are of interest to PDE analysts as well as probabilists because the tools that are used to study them borrow techniques from both fields. There are also strong links to mathematical physics.
考虑一个由顶点和边组成的晶格。我们给每一条边分配一个随机选择的正数,称为电导。现在考虑一个随机游走(或粒子)沿晶格的顶点沿着移动,使得从一个顶点跳到它的一个邻居的概率与连接边的电导成正比。这种在随机环境中的可逆随机行走的模型在文献中被称为随机电导模型。几十年来,随机环境中的随机游动一直是概率论研究的中心。一个动机源于物理学、材料科学或生物学中的应用,例如研究通过多孔介质或复合材料的传输过程。这种非均匀介质的一个共同特征是在微观尺度上存在强烈的空间不均匀性。由于微观结构通常只能统计地表征,因此在非均匀介质中的这种输运过程自然地由随机环境中的随机行走来模拟。当在宏观长度和时间尺度上研究这种随机行走时,与微观不均匀性相比,宏观长度和时间尺度要大得多,人们通常观察到随机不规则微观结构被平均化并且出现均匀化效应,使得有效的宏观行为可以通过均匀环境中的简单得多的随机过程来描述。现在感兴趣的是,在随机介质上在什么条件下发生这种均化效应。这可以用随机游走的标度极限结果来表示。在这个项目中,我们的目标是建立这样的缩放限制随机电导下的随机游动与长程跳跃,即随机游动不仅允许跳到它的邻居之一,但也到其他顶点更远。作为基本的顶点集,我们考虑(1)欧几里得格和(2)在欧几里得空间中实现点过程。我们还旨在研究相关的偏微分方程(PDE),涉及非局部离散算子描述的转移概率的随机游动。事实上,随机电导模型是偏微分方程分析师和概率学家感兴趣的,因为用于研究它们的工具借鉴了这两个领域的技术。与数学物理也有很强的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian Andres其他文献
Heat kernel fluctuations and quantitative homogenization for the one-dimensional Bouchaud trap model
一维布绍陷阱模型的热核波动和定量均质化
- DOI:
10.1016/j.spa.2024.104336 - 发表时间:
2023 - 期刊:
- 影响因子:1.4
- 作者:
Sebastian Andres;D. Croydon;Takashi Kumagai - 通讯作者:
Takashi Kumagai
Sebastian Andres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
大Peclect数多粒径分布球形多孔介质内流动、传质和反应特性的研究
- 批准号:21276256
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
不经意传输协议中的若干问题研究
- 批准号:60873041
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
面向Web信息检索的随机P2P拓扑模型及语义网重构技术研究
- 批准号:60573142
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:面上项目
利用逆转录病毒siRNA随机文库在Hela细胞中批量获得TRAIL凋亡通路相关功能基因的研究
- 批准号:30400080
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Parallelization and robustness of random walks: Approaches from "short" random walks analysis
随机游走的并行化和鲁棒性:“短”随机游走分析的方法
- 批准号:
23K16840 - 财政年份:2023
- 资助金额:
$ 32.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
- 批准号:
EP/W033917/1 - 财政年份:2023
- 资助金额:
$ 32.36万 - 项目类别:
Research Grant
RUI: Boundary and entropy of random walks on groups
RUI:群体随机游走的边界和熵
- 批准号:
2246727 - 财政年份:2023
- 资助金额:
$ 32.36万 - 项目类别:
Standard Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
- 批准号:
23K12986 - 财政年份:2023
- 资助金额:
$ 32.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
AF: Small: New Tools to Analyze Random Walks
AF:小:分析随机游走的新工具
- 批准号:
2203541 - 财政年份:2022
- 资助金额:
$ 32.36万 - 项目类别:
Standard Grant
Applications of random graphs and walks
随机图和游走的应用
- 批准号:
RGPIN-2020-04398 - 财政年份:2022
- 资助金额:
$ 32.36万 - 项目类别:
Discovery Grants Program - Individual
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 32.36万 - 项目类别:
Discovery Grants Program - Individual
Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
- 批准号:
2203867 - 财政年份:2022
- 资助金额:
$ 32.36万 - 项目类别:
Standard Grant