RUI: Boundary and entropy of random walks on groups
RUI:群体随机游走的边界和熵
基本信息
- 批准号:2246727
- 负责人:
- 金额:$ 21.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Applications of random walks emerge in different branches of science and our daily life. In game theory, random walks can model shuffling a deck of cards to find optimal shuffle iterations. In finance, the unpredictability of price changes of stocks can be modeled by random walks. The project will apply rigorous mathematical tools for studying the long-term behavior of random walks. In particular, the following two problems will be investigated: first, how geometric or algebraic features can capture the long-term behavior of random walks. Second, how different quantities can describe the long-term behavior of a random walk. The research will engage undergraduate and graduate students. This engagement with students exposes them to contemporary areas of mathematics not part of the regular curriculum. The work will expand and refine existing results on random walk invariants such as boundaries and asymptotic entropies. These arise from the interaction between random walks on groups and their algebraic or geometric structures. The project will improve understanding of the Poisson boundary, which provides a representation of bounded harmonic functions on a group for a given probability measure. The current work will leverage recent developments, such as the theory of pivotal times, to identify the Poisson boundary of random walks on hyperbolic-like groups. Another goal is to investigate connections between quotients of the Poisson boundaries with subgroups of a given group. The area of research has strong connections to geometric group theory, ergodic theory, and information theory. This project is jointly funded by the DMS Probability program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机游动的应用出现在科学的不同分支和我们的日常生活中。在博弈论中,随机游走可以对洗牌进行建模,以找到最佳的洗牌迭代。在金融中,股票价格变化的不可预测性可以用随机游走来建模。该项目将应用严格的数学工具来研究随机游动的长期行为。特别是,以下两个问题将被调查:第一,几何或代数特征如何捕捉随机游动的长期行为。第二,不同的量如何描述随机游走的长期行为。这项研究将吸引本科生和研究生参与。这种与学生的接触使他们接触到现代数学领域,而不是常规课程的一部分。这项工作将扩大和完善现有的结果,如边界和渐近熵的随机游走不变量。这些问题产生于群上的随机游动和它们的代数或几何结构之间的相互作用。该项目将提高对泊松边界的理解,泊松边界提供了一个给定概率测度的群上有界调和函数的表示。当前的工作将利用最新的发展,例如关键时间理论,来确定双曲型群上随机游动的Poisson边界。另一个目标是研究泊松边界与给定群的子群之间的关系。研究领域与几何群论、遍历理论和信息论有着密切的联系。该项目由DMS概率计划和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Behrang Forghani其他文献
The Poisson boundary of hyperbolic groups without moment conditions
无矩条件的双曲群的泊松边界
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Kunal Chawla;Behrang Forghani;Joshua Frisch;G. Tiozzo - 通讯作者:
G. Tiozzo
On transformations of Markov chains and Poisson boundary
关于马尔可夫链和泊松边界的变换
- DOI:
10.1090/tran/7975 - 发表时间:
2019 - 期刊:
- 影响因子:1.3
- 作者:
Iddo Ben;Behrang Forghani - 通讯作者:
Behrang Forghani
Positive Harmonic Functions of Transformed Random Walks
- DOI:
10.1007/s11118-018-9724-4 - 发表时间:
2018-08-07 - 期刊:
- 影响因子:0.800
- 作者:
Behrang Forghani;Keivan Mallahi-Karai - 通讯作者:
Keivan Mallahi-Karai
Random walks of infinite moment on free semigroups
自由半群上无限矩的随机游走
- DOI:
10.1007/s00440-019-00911-7 - 发表时间:
2017 - 期刊:
- 影响因子:2
- 作者:
Behrang Forghani;G. Tiozzo - 通讯作者:
G. Tiozzo
Poisson representation and Furstenberg entropy of hypergroups
超群的泊松表示和弗斯滕伯格熵
- DOI:
10.1016/j.jfa.2023.110090 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:1.600
- 作者:
Behrang Forghani;Keivan Mallahi-Karai - 通讯作者:
Keivan Mallahi-Karai
Behrang Forghani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Behrang Forghani', 18)}}的其他基金
Boundaries of Random Walks and Applications
随机游走的边界和应用
- 批准号:
1901147 - 财政年份:2019
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
Facilities for Atmospheric Boundary Layer Evaluation and Testing
大气边界层评估和测试设施
- 批准号:
LE240100116 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
- 批准号:
2340121 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
- 批准号:
EP/Y021983/1 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Research Grant
AGS-FIRP Track 1: Enhancing Undergraduate Education of the Planetary Boundary Layer during the 2024 Solar Eclipse
AGS-FIRP 第 1 轨道:加强 2024 年日食期间行星边界层的本科教育
- 批准号:
2336464 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
- 批准号:
2350049 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
Impact of roughness on adverse pressure gradient turbulent boundary layers
粗糙度对逆压梯度湍流边界层的影响
- 批准号:
DP240103015 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Discovery Projects
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
CAREER: Investigating the tectono-magmatic response to a transitioning plate boundary: a case study of the California Borderlands
职业:研究板块过渡边界的构造岩浆响应:加州边境地区的案例研究
- 批准号:
2338594 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
Assessing the paleoenvironmental and geobiological significance of carbonates from the Eocene-Oligocene boundary of the White River Group
评估白河群始新世-渐新世边界碳酸盐的古环境和地球生物学意义
- 批准号:
2311532 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant