Simplifying quantum computing: from theory to applications
简化量子计算:从理论到应用
基本信息
- 批准号:EP/W028301/1
- 负责人:
- 金额:$ 127.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The field of quantum computing has seen a tremendous advancement in the last decade. In 2019, for the first time in history, Google demonstrated that a quantum computer can outperform a classical computer. This is known as quantum supremacy, and since then it has been confirmed by other independent groups. Despite its tremendous importance, quantum supremacy was shown for an on-purpose designed model, with limited connections with reality. One could thus say that the first fundamental quantum question was answered, namely, whether it is possible to design a quantum computer faster (for specific purposes) than a classical one. The second question is however still open, and has deeper implications. It is about when it will be possible to integrate quantum algorithms into the texture of the society, particularly within its scientific and economical branches. There is a wide variety of proposals on how to use a quantum computer for practical purposes, that include the development of new materials and drugs, cryptography, finance, the simulation of physical models, and possibly even fighting climate change. However, these proposals have mostly been applied to small problem instances that can be reached by classical computers as well and are of limited practical use. There are still challenges to be addressed in order to exploit all advantages of quantum machines, such as increasing the number of qubits and their coherence time, lowering the gate errors, and constructing all-to-all connected architectures that can be easily scaled up. While quantum machines improve to face these challenges, there is an immense amount of work from the theoretical side to be made. In its essence, one of the main duties from the theory side consists in finding new ways to lower the requirements on the quantum hardware, in order to run a desired algorithm. This is what this project is about, and in the short term will reduce the time required to quantum technologies to be employed in scientifically and economically relevant tasks. In the long term, it will allow to greatly increase the complexity of the problems that can be studied with more mature quantum computers.In order to achieve this vision, there are three main objectives within this project, that naturally build on my experience. The first one includes the development of very low demanding protocols (in terms of required quantum resources) to cast physical models onto a quantum computer. The second category consists in finding new algorithms tailored for specific platforms and optimized for a given problem. Alongside, the candidate will develop a "translating tool" that can adapt a protocol, designed and optimized for a certain hardware, to another hardware based on different resources. Finally, the third category concerns what the candidate believes is one of the major bottlenecks of near-term quantum applications: the measurement of physical observables. This bottleneck is particularly evident for all schemes that heavily resorts on many evaluations of a given quantum observable. With simulated models of increasing complexity, the ability of efficiently measuring an observable will become crucial within the next few years. These three categories fall entirely within the EPSRC portfolio and the UK quantum technologies innovation plan. In fact, the UK considers the development of ion-based, superconducting, and photonic devices a priority. This research proposal and my expertise hold the potential of considerably speeding up the experimental simulations of currently inaccessible models on different platforms. This will positively impact not only the academic institutions within UK, but also industries that are developing new methods to exploit the capabilities of quantum hardware in the NISQ (Noisy, Intermediate-Scale Quantum) era.
量子计算领域在过去十年中取得了巨大的进步。2019年,谷歌有史以来第一次证明量子计算机可以超越经典计算机。这被称为量子至上,从那时起,它已被其他独立团体证实。尽管量子霸权具有巨大的重要性,但它是在一个专门设计的模型中展示的,与现实的联系有限。因此,我们可以说,第一个基本的量子问题得到了回答,即是否有可能设计出比经典计算机更快的量子计算机(用于特定目的)。然而,第二个问题仍然是开放的,并有更深的影响。这是关于何时有可能将量子算法整合到社会的结构中,特别是在其科学和经济分支中。关于如何将量子计算机用于实际目的,有各种各样的建议,包括开发新材料和药物,密码学,金融,物理模型模拟,甚至可能对抗气候变化。然而,这些建议大多被应用于小的问题实例,可以达到经典的计算机以及有限的实际用途。为了利用量子机器的所有优势,仍然存在一些挑战需要解决,例如增加量子比特的数量及其相干时间,降低门误差,以及构建可以轻松扩展的所有连接架构。虽然量子机器可以应对这些挑战,但理论方面还有大量的工作要做。从本质上讲,理论方面的主要职责之一就是找到新的方法来降低对量子硬件的要求,以便运行所需的算法。这就是该项目的目的,在短期内将减少量子技术用于科学和经济相关任务所需的时间。从长远来看,它将允许大大增加可以用更成熟的量子计算机研究的问题的复杂性。为了实现这一愿景,这个项目中有三个主要目标,自然是建立在我的经验之上。第一个包括开发要求非常低的协议(就所需的量子资源而言),以将物理模型投射到量子计算机上。第二类是寻找为特定平台量身定制的新算法,并针对给定问题进行优化。此外,候选人还将开发一个“翻译工具”,该工具可以将为特定硬件设计和优化的协议适应基于不同资源的另一个硬件。最后,第三类涉及候选人认为近期量子应用的主要瓶颈之一:物理可观测量的测量。这个瓶颈对于所有严重依赖于对给定量子可观测值的许多评估的方案来说尤其明显。随着模拟模型的日益复杂,有效测量可观测量的能力将在未来几年内变得至关重要。这三个类别完全属于EPSRC投资组合和英国量子技术创新计划。事实上,英国认为离子基、超导和光子器件的发展是一个优先事项。这项研究提案和我的专业知识有可能大大加快目前在不同平台上无法访问的模型的实验模拟。这不仅将对英国的学术机构产生积极影响,也将对正在开发新方法以利用NISQ(噪声,中等规模量子)时代量子硬件能力的行业产生积极影响。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive estimation of quantum observables
- DOI:10.22331/q-2023-01-26-906
- 发表时间:2021-10
- 期刊:
- 影响因子:6.4
- 作者:Ariel Shlosberg;Andrew Jena;Priyanka Mukhopadhyay;J. Haase;Felix Leditzky;Luca Dellantonio
- 通讯作者:Ariel Shlosberg;Andrew Jena;Priyanka Mukhopadhyay;J. Haase;Felix Leditzky;Luca Dellantonio
Enhancing quantum computation via superposition of quantum gates
- DOI:10.1103/physreva.108.062604
- 发表时间:2023-04
- 期刊:
- 影响因子:2.9
- 作者:J. Miguel-Ramiro;Zheng Shi;Luca Dellantonio;Albie Chan;C. Muschik;Wolfgang Dür
- 通讯作者:J. Miguel-Ramiro;Zheng Shi;Luca Dellantonio;Albie Chan;C. Muschik;Wolfgang Dür
Minimal qubit representations of Hamiltonians via conserved charges
通过守恒电荷的哈密顿量的最小量子位表示
- DOI:10.1103/physreva.109.022618
- 发表时间:2024
- 期刊:
- 影响因子:2.9
- 作者:Gunderman L
- 通讯作者:Gunderman L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Dellantonio其他文献
3+1D $ heta$-Term on the Lattice from the Hamiltonian Perspective
3 哈密顿视角下格子上的 1D $ heta$-项
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Angus Kan;L. Funcke;S. Kuhn;Luca Dellantonio;Jinglei Zhang;J. Haase;C. Muschik;K. Jansen - 通讯作者:
K. Jansen
Measurement-Based Variational Quantum Eigensolver.
基于测量的变分量子本征求解器。
- DOI:
10.1103/physrevlett.126.220501 - 发表时间:
2020 - 期刊:
- 影响因子:8.6
- 作者:
R. Ferguson;Luca Dellantonio;K. Jansen;Abdulrahim Al Balushi;W. Dur;C. Muschik - 通讯作者:
C. Muschik
qLUE: A Quantum Clustering Algorithm for Multi- Dimensional Datasets
qLUE:多维数据集的量子聚类算法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Dhruv Gopalakrishnan;Luca Dellantonio;A. Pilato;W. Redjeb;Felice Pantaleo;Michele Mosca - 通讯作者:
Michele Mosca
Simulating two-dimensional lattice gauge theories on a qudit quantum computer
在量子比特量子计算机上模拟二维格点规范理论
- DOI:
10.1038/s41567-025-02797-w - 发表时间:
2025-03-25 - 期刊:
- 影响因子:18.400
- 作者:
Michael Meth;Jinglei Zhang;Jan F. Haase;Claire Edmunds;Lukas Postler;Andrew J. Jena;Alex Steiner;Luca Dellantonio;Rainer Blatt;Peter Zoller;Thomas Monz;Philipp Schindler;Christine Muschik;Martin Ringbauer - 通讯作者:
Martin Ringbauer
Luca Dellantonio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
- 批准号:50906055
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
广义Besov函数类上的几个逼近特征
- 批准号:10926056
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
- 批准号:30772507
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
驻波场驱动的量子相干效应的研究
- 批准号:10774058
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
半导体物理中的非线性偏微分方程组
- 批准号:10541001
- 批准年份:2005
- 资助金额:4.0 万元
- 项目类别:专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
- 批准号:30570686
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Hardware Security Module for secure delegated Quantum Cloud Computing
用于安全委托量子云计算的硬件安全模块
- 批准号:
EP/Z000564/1 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
Research Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
Fellowship
SPARQ(s) - Scalable, Precise, And Reliable positioning of color centers for Quantum computing and simulation
SPARQ(s) - 用于量子计算和模拟的可扩展、精确且可靠的色心定位
- 批准号:
10078083 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
Collaborative R&D
Travel: NSF Student Travel Grant for 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
旅费:2024 年 IEEE 国际量子计算与工程会议 (QCE) 的 NSF 学生旅费补助金
- 批准号:
2417602 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
Standard Grant
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
- 批准号:
2328096 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
Standard Grant
CAREER: Quantum Computing - Trapped ion QPU with integrated photonics
职业:量子计算 - 具有集成光子学的俘获离子 QPU
- 批准号:
2338369 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
Continuing Grant
Superconducting Gatemon Quantum Computing Enabled by CryoElectronics
CryoElectronics 支持的超导 Gatemon 量子计算
- 批准号:
EP/X025152/1 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
Research Grant
Quantum computing solutions for optimisation problems in Energy Grids
能源网格优化问题的量子计算解决方案
- 批准号:
10108062 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
Small Business Research Initiative
Quantum reservoir computing for efficient signal processing
用于高效信号处理的量子存储计算
- 批准号:
10108296 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
EU-Funded
Towards Distributed Computing on a Quantum Network
迈向量子网络上的分布式计算
- 批准号:
2906416 - 财政年份:2024
- 资助金额:
$ 127.28万 - 项目类别:
Studentship