CASTEP-USER: Predictive Materials Modelling For Experimental Scientists

CASTEP-USER:实验科学家的预测材料建模

基本信息

  • 批准号:
    EP/W030438/1
  • 负责人:
  • 金额:
    $ 68.97万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Many technological advances in modern-day life depend upon the development of new materials, or better control and understanding of existing materials. The chemical, mechanical and physical properties of materials depend on their constituent atoms and, in particular, their electrons. CASTEP is a state-of-the-art software package which uses quantum mechanics to predict the behaviour of those electrons and, hence, the material, and it is widely used by scientists in academia and industry. Many of these researchers are experimental scientists, rather than computational specialists, and the main aim of this proposal is to support them to use CASTEP more easily, efficiently and reliably, and to expand the user community by lowering the barrier of entry for new users.The work focuses on preparing CASTEP for the future, by improving its Usability, Sustainability, Efficiency and Reliability (USER) so any researcher can run it quickly, consistently and easily on any computer, from laptops to HPC facilities. The key challenges this proposal addresses are to:* enhance accessibility for non-specialist scientists* exploit future methods and technologies* take full advantage of available computing resources* further improve reliability, and be fully validatedThis far-reaching programme will improve the whole CASTEP user experience, including: re-imagining CASTEP's interface (focusing on scientific output, not algorithmic details) and creating comprehensive examples and tutorials; developing a deep API for embedding CASTEP in high-level workflows; automating CASTEP's parallel decomposition; and improving fault-tolerance. The work will be in collaboration with consortia (e.g. MCC, UKCP, CCP-NC, CCP9) and national experimental facilities (e.g. SuperSTEM), as well as industry partners (e.g. NVIDIA and BIOVIA).The ultimate, overarching goal is that CASTEP itself becomes 'invisible'; a hidden software infrastructure for providing quick, clear answers to research questions, whose correctness and successful operation may be taken for granted.The research described in this proposal will make significant impacts on many areas of academic and industrial research, particularly in materials for future technology. CASTEP is already used by well over 1000 academic groups and industrial research sites across the globe, including Johnson Matthey, Sony, Solvay, PG Corp, Pfizer, Astra Zeneca and Toyota, and supports research in a vast range of materials such as semiconductor nanostructures, ultra-high temperature ceramics, nanoscale devices, fluorophores, thermoelectrics, hybrid perovskites and solar cells, inorganic nanotubes and metal-air battery anodes.This work will promote CASTEP use across a diverse range of STEM disciplines, increase the effectiveness and impact of a wide variety of research initiatives, and enable researchers to directly address 5 of EPSRC's Grand Challenges in Physics, Engineering and Chemical Science.
现代生活中的许多技术进步取决于新材料的开发,或对现有材料的更好控制和理解。材料的化学、机械和物理性质取决于其组成原子,特别是电子。CASTEP是一个最先进的软件包,它使用量子力学来预测这些电子的行为,从而预测材料,它被学术界和工业界的科学家广泛使用。这些研究人员中的许多人是实验科学家,而不是计算专家,本提案的主要目的是支持他们更容易,有效和可靠地使用CASTEP,并通过降低新用户的进入门槛来扩大用户社区。工作重点是为CASTEP的未来做好准备,通过提高其可用性,可持续性,效率和可靠性(用户),因此任何研究人员都可以在任何计算机上快速,一致和轻松地运行它,从笔记本电脑到HPC设施。该提案解决的主要挑战是:* 增强非专业科学家的可访问性 * 利用未来的方法和技术 * 充分利用现有的计算资源 * 进一步提高可靠性,并得到充分验证这一意义深远的计划将改善整个CASTEP用户体验,包括:重新构想CASTEP的界面(专注于科学输出,而不是算法细节)并创建全面的示例和教程;开发用于将CASTEP嵌入高级工作流的深度API;实现CASTEP并行分解的自动化,提高容错性。这项工作将与财团合作(例如MCC、UKCP、CCP-NC、CCP 9)和国家实验设施(例如SuperSTEM)以及行业合作伙伴(例如NVIDIA和BIOVIA)。最终的总体目标是CASTEP本身变得“不可见”;一个隐藏的软件基础设施,为研究问题提供快速,清晰的答案,其正确性和成功的操作可以被认为是理所当然的。本提案中描述的研究将对学术和工业研究的许多领域产生重大影响,特别是在未来技术的材料方面。CASTEP已经被地球仪的1000多个学术团体和工业研究中心使用,包括约翰逊Matthey,索尼,索尔维,PG Corp,辉瑞,Astra Zeneca和丰田,并支持广泛的材料研究,如半导体纳米结构,超高温陶瓷,纳米器件,荧光团,热电,混合钙钛矿和太阳能电池,这项工作将促进CASTEP在各种STEM学科中的使用,提高各种研究计划的有效性和影响力,并使研究人员能够直接解决EPSRC在物理学,工程学和化学科学方面的5个重大挑战。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Massively parallel fitting of Gaussian approximation potentials
高斯近似势的大规模并行拟合
  • DOI:
    10.1088/2632-2153/aca743
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Klawohn S
  • 通讯作者:
    Klawohn S
Does Cr2AlN Have the Highest Possible Superconducting Transition Temperature in the M2AX family?
Cr2AlN 在 M2AX 系列中是否具有最高的超导转变温度?
  • DOI:
    10.21203/rs.3.rs-2569477/v1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karaca E
  • 通讯作者:
    Karaca E
Prediction of phonon-mediated superconductivity in new Ti-based M[Formula: see text]AX phases.
  • DOI:
    10.1038/s41598-022-17539-8
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Karaca, E.;Byrne, P. J. P.;Hasnip, P. J.;Probert, M. I. J.
  • 通讯作者:
    Probert, M. I. J.
Cr[Formula: see text]AlN and the search for the highest temperature superconductor in the M[Formula: see text]AX family.
  • DOI:
    10.1038/s41598-023-33517-0
  • 发表时间:
    2023-04-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Karaca, E.;Byrne, P. J. P.;Hasnip, P. J.;Probert, M. I. J.
  • 通讯作者:
    Probert, M. I. J.
Gaussian approximation potentials: Theory, software implementation and application examples.
  • DOI:
    10.1063/5.0160898
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sascha Klawohn;James P Darby;J. Kermode;Gábor Csányi;Miguel A Caro;Albert P. Bart'ok
  • 通讯作者:
    Sascha Klawohn;James P Darby;J. Kermode;Gábor Csányi;Miguel A Caro;Albert P. Bart'ok
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Hasnip其他文献

Philip Hasnip的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Hasnip', 18)}}的其他基金

The UK Car-Parrinello HEC Consortium
英国汽车-Parrinello HEC 联盟
  • 批准号:
    EP/X035891/1
  • 财政年份:
    2023
  • 资助金额:
    $ 68.97万
  • 项目类别:
    Research Grant
Materials and Molecular Modelling (MMM) Exascale Design and Development Working Group (DDWG)
材料和分子建模 (MMM) 百亿亿次设计和开发工作组 (DDWG)
  • 批准号:
    EP/V001256/1
  • 财政年份:
    2020
  • 资助金额:
    $ 68.97万
  • 项目类别:
    Research Grant
York: Transforming Research-Oriented Software Engineering
约克:转变研究型软件工程
  • 批准号:
    EP/R025770/1
  • 财政年份:
    2018
  • 资助金额:
    $ 68.97万
  • 项目类别:
    Fellowship

相似海外基金

Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
  • 批准号:
    10683426
  • 财政年份:
    2019
  • 资助金额:
    $ 68.97万
  • 项目类别:
Predictive Modeling of User Performance for Validated Effectiveness Measures of Search Engine Quality
用户表现的预测建模,用于验证搜索引擎质量的有效性指标
  • 批准号:
    RGPIN-2014-03642
  • 财政年份:
    2019
  • 资助金额:
    $ 68.97万
  • 项目类别:
    Discovery Grants Program - Individual
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
  • 批准号:
    10325279
  • 财政年份:
    2019
  • 资助金额:
    $ 68.97万
  • 项目类别:
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
  • 批准号:
    10590558
  • 财政年份:
    2019
  • 资助金额:
    $ 68.97万
  • 项目类别:
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
  • 批准号:
    10468936
  • 财政年份:
    2019
  • 资助金额:
    $ 68.97万
  • 项目类别:
Predictive Modeling of User Performance for Validated Effectiveness Measures of Search Engine Quality
用户表现的预测建模,用于验证搜索引擎质量的有效性指标
  • 批准号:
    RGPIN-2014-03642
  • 财政年份:
    2017
  • 资助金额:
    $ 68.97万
  • 项目类别:
    Discovery Grants Program - Individual
To what extent are Google search queries predictive of user intent?
Google 搜索查询在多大程度上可以预测用户意图?
  • 批准号:
    1923258
  • 财政年份:
    2017
  • 资助金额:
    $ 68.97万
  • 项目类别:
    Studentship
Predictive Modeling of User Performance for Validated Effectiveness Measures of Search Engine Quality
用户表现的预测建模,用于验证搜索引擎质量的有效性指标
  • 批准号:
    RGPIN-2014-03642
  • 财政年份:
    2016
  • 资助金额:
    $ 68.97万
  • 项目类别:
    Discovery Grants Program - Individual
Predictive Modeling of User Performance for Validated Effectiveness Measures of Search Engine Quality
用户表现的预测建模,用于验证搜索引擎质量的有效性度量
  • 批准号:
    RGPIN-2014-03642
  • 财政年份:
    2015
  • 资助金额:
    $ 68.97万
  • 项目类别:
    Discovery Grants Program - Individual
Predictive Modeling of User Performance for Validated Effectiveness Measures of Search Engine Quality
用户表现的预测建模,用于验证搜索引擎质量的有效性度量
  • 批准号:
    RGPIN-2014-03642
  • 财政年份:
    2014
  • 资助金额:
    $ 68.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了