Sustainable Computing and Communication at the Edge (SONATA)

边缘可持续计算和通信 (SONATA)

基本信息

  • 批准号:
    EP/W035960/1
  • 负责人:
  • 金额:
    $ 25.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern communication networks are rapidly evolving into sophisticated systems combining communication and computing capabilities. Computation at the network edge is the key to supporting many emerging applications, from extended reality to smart health, smart cities, smart factories and autonomous driving. SONATA is motivated by the fact that the large scale adoption of edge intelligence technology, while benefiting human productivity and efficiency, will result in a surge of data and computation in mobile networks, which, in turn, will exacerbate their already significant energy consumption. SONATA is an interdisciplinary effort to tame this growing energy demand by combining memristive hardware and energy harvesting technologies with novel machine learning algorithms and physical layer communication techniques. In particular, we want to combine the energy efficient in-memory computing and learning potential of memristive devices with an "over-the-air computation (OAC)" approach to edge learning, which turns the air from a purely communication medium to a computation unit. Our project not only aims at reducing the energy requirements of edge learning systems drastically, but also focuses on making them robust against stochastic failures, due to unreliable hardware or energy sources. We will exploit tools from circuit design, coding theory, wireless communications, machine learning and network science to achieve these goals. Results from SONATA will open up new directions for research and development of technologies that will allow mobile systems to offer the much anticipated communication and computing services in a sustainable manner.
现代通信网络正在迅速发展成为结合通信和计算能力的复杂系统。网络边缘的计算是支持许多新兴应用的关键,从延展实境到智能健康、智能城市、智能工厂和自动驾驶。SONATA的动机是,大规模采用边缘智能技术,虽然有利于人类的生产力和效率,但将导致移动的网络中的数据和计算激增,这反过来又会加剧其已经显着的能源消耗。SONATA是一个跨学科的努力,通过将忆阻硬件和能量收集技术与新型机器学习算法和物理层通信技术相结合,来驯服这种不断增长的能源需求。特别是,我们希望将联合收割机的内存计算和忆阻设备的学习潜力与“空中计算(OAC)”方法结合起来进行边缘学习,将空气从纯粹的通信介质转变为计算单元。我们的项目不仅旨在大幅降低边缘学习系统的能源需求,而且还专注于使它们能够抵御由于不可靠的硬件或能源而导致的随机故障。我们将利用电路设计,编码理论,无线通信,机器学习和网络科学的工具来实现这些目标。SONATA的成果将为技术研发开辟新的方向,使移动的系统能够以可持续的方式提供备受期待的通信和计算服务。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian Over-the-Air Computation
All You Need Is Feedback: Communication With Block Attention Feedback Codes
  • DOI:
    10.1109/jsait.2022.3223901
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emre Ozfatura;Yulin Shao;A. Perotti;B. Popović;Deniz Gündüz
  • 通讯作者:
    Emre Ozfatura;Yulin Shao;A. Perotti;B. Popović;Deniz Gündüz
Semantic Communications With Discrete-Time Analog Transmission: A PAPR Perspective
离散时间模拟传输的语义通信:PAPR 视角
Collaborative Semantic Communication for Edge Inference
  • DOI:
    10.1109/lwc.2023.3256006
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    W. F. Lo;N. Mital;Haotian Wu;Deniz Gündüz
  • 通讯作者:
    W. F. Lo;N. Mital;Haotian Wu;Deniz Gündüz
Beyond Transmitting Bits: Context, Semantics, and Task-Oriented Communications
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deniz Gunduz其他文献

Generative Joint Source-Channel Coding for Semantic Image Transmission
用于语义图像传输的生成联合源通道编码
Deep Joint Source-Channel Coding for Semantic Communications
用于语义通信的深度联合源通道编码
  • DOI:
    10.1109/mcom.004.2200819
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Jia;Tze;Bo Ai;W. Chen;Yuxuan Sun;Deniz Gunduz
  • 通讯作者:
    Deniz Gunduz
Energy harvesting communication networks: Optimization and demonstration (the E-CROPS project)
能量收集通信网络:优化和示范(E-CROPS 项目)
Speeding Up Private Distributed Matrix Multiplication via Bivariate Polynomial Codes
通过二元多项式代码加速私有分布式矩阵乘法
On Perfect Obfuscation: Local Information Geometry Analysis
论完美混淆:局部信息几何分析

Deniz Gunduz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deniz Gunduz', 18)}}的其他基金

Artificial Intelligence in the Air
空中人工智能
  • 批准号:
    EP/X030806/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Research Grant
Communication-Aware Dynamic Edge Computing (CONNECT)
通信感知动态边缘计算 (CONNECT)
  • 批准号:
    EP/T023600/1
  • 财政年份:
    2020
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Research Grant
COnsumer-centric Privacy in smart Energy gridS
智能能源网格中以消费者为中心的隐私
  • 批准号:
    EP/N021738/1
  • 财政年份:
    2015
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Research Grant

相似海外基金

SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Standard Grant
FET: Small: Decoding Quantum Error-Correcting Codes for Quantum Computing and Communication
FET:小型:解码量子计算和通信的量子纠错码
  • 批准号:
    2316713
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Standard Grant
Quantum computing and communication with spin-photon interfaces
量子计算和自旋光子接口通信
  • 批准号:
    2742551
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Studentship
Scalable Federated Learning and Analytics with Communication Efficiency in Mobile Cloud Computing
移动云计算中具有通信效率的可扩展联合学习和分析
  • 批准号:
    RGPIN-2022-04782
  • 财政年份:
    2022
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Discovery Grants Program - Individual
Semiconductor circuit design in advanced silicon technologies for next-generation communication, computing and automation
采用先进硅技术的半导体电路设计,用于下一代通信、计算和自动化
  • 批准号:
    RGPIN-2022-04158
  • 财政年份:
    2022
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning and Neuromorphic Computing for Applications in Communication Systems
机器学习和神经形态计算在通信系统中的应用
  • 批准号:
    547132-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Approximate Computing for Fiber-Optic Communication
光纤通信的近似计算
  • 批准号:
    546974-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: CNS Core: Small: Timely Computing and Learning over Communication Networks
合作研究:CNS 核心:小型:通过通信网络进行及时计算和学习
  • 批准号:
    2114542
  • 财政年份:
    2021
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Standard Grant
Novel Design Methodology for Future Highly Power-efficient Approximate Communication Intensive Computing
未来高能效近似通信密集型计算的新颖设计方法
  • 批准号:
    21K17724
  • 财政年份:
    2021
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Machine Learning and Neuromorphic Computing for Applications in Communication Systems
机器学习和神经形态计算在通信系统中的应用
  • 批准号:
    547132-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了