Artificial Intelligence in the Air

空中人工智能

基本信息

  • 批准号:
    EP/X030806/1
  • 负责人:
  • 金额:
    $ 219.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Intelligence is coming to the edge. Autonomous systems and industrial edge are the next targets of artificial intelligence (AI). However, despite impressive progress in hardware, edge devices do not have sufficient computing power and data to train and deploy state-of-the-art machine learning (ML) algorithms. Communication can allow edge devices to share their data and computational resources, and provide manifold increase in their learning capabilities, similarly to the impact language had on human intelligence. However, influenced by Shannon's seminal work, our current communication architectures are designed to establish reliable bit pipes between nodes, dismissing the relevance or utility of delivered bits. Yet, in ML applications, we are interested in inferring features of the underlying signals or messages, rather than reconstructing them. Increased data rates do not translate into faster or more accurate learning algorithms, and the content, timeliness, and the relevance of information are often more important than its quantity. AI-R challenges the current framework that treats communication and learning separately, striving to bridge this gap by developing an AI-oriented communication paradigm from fundamental theoretical principles. This new paradigm will go beyond the classical communication-theoretic framework by taking into account the ultimate goals of information transmission, for example, detecting anomalies in drone footage or remote controlling an industrial robot. AI-R will also step out of the cycles of incremental research in communications by fully exploiting AI capabilities to `learn' the best communication strategies to achieve the prescribed objectives. Building upon our expertise and recent contributions in information theory, coding, communications and ML, the project will balance fundamental research with application-oriented algorithm design and implementation to develop new engineering insights and products towards ambient edge intelligence.
智能正在走向边缘。自主系统和工业边缘是人工智能(AI)的下一个目标。然而,尽管硬件取得了令人印象深刻的进步,但边缘设备没有足够的计算能力和数据来训练和部署最先进的机器学习(ML)算法。通信可以让边缘设备共享它们的数据和计算资源,并为它们的学习能力提供多方面的提高,类似于语言对人类智力的影响。然而,受香农开创性工作的影响,我们当前的通信架构被设计为在节点之间建立可靠的比特管道,忽略了所传递比特的相关性或实用性。然而,在机器学习应用中,我们感兴趣的是推断底层信号或消息的特征,而不是重建它们。增加的数据速率并不能转化为更快或更准确的学习算法,而且信息的内容、及时性和相关性往往比其数量更重要。AI-R挑战了目前将沟通和学习分开对待的框架,努力从基本理论原则出发,开发以ai为导向的沟通范式,弥合这一差距。这种新范式将超越传统的通信理论框架,考虑到信息传输的最终目标,例如,检测无人机镜头中的异常或远程控制工业机器人。AI- r还将走出通信增量研究的周期,充分利用AI能力来“学习”最佳通信策略,以实现规定的目标。基于我们在信息论、编码、通信和机器学习方面的专业知识和最新贡献,该项目将平衡基础研究与面向应用的算法设计和实现,以开发面向环境边缘智能的新工程见解和产品。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AttentionCode: Ultra-Reliable Feedback Codes for Short-Packet Communications
  • DOI:
    10.1109/tcomm.2023.3280563
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Yulin Shao;Emre Ozfatura;A. Perotti;B. Popović;Deniz Gündüz
  • 通讯作者:
    Yulin Shao;Emre Ozfatura;A. Perotti;B. Popović;Deniz Gündüz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deniz Gunduz其他文献

Generative Joint Source-Channel Coding for Semantic Image Transmission
用于语义图像传输的生成联合源通道编码
Deep Joint Source-Channel Coding for Semantic Communications
用于语义通信的深度联合源通道编码
  • DOI:
    10.1109/mcom.004.2200819
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Jia;Tze;Bo Ai;W. Chen;Yuxuan Sun;Deniz Gunduz
  • 通讯作者:
    Deniz Gunduz
Speeding Up Private Distributed Matrix Multiplication via Bivariate Polynomial Codes
通过二元多项式代码加速私有分布式矩阵乘法
Energy harvesting communication networks: Optimization and demonstration (the E-CROPS project)
能量收集通信网络:优化和示范(E-CROPS 项目)
On Perfect Obfuscation: Local Information Geometry Analysis
论完美混淆:局部信息几何分析

Deniz Gunduz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deniz Gunduz', 18)}}的其他基金

Sustainable Computing and Communication at the Edge (SONATA)
边缘可持续计算和通信 (SONATA)
  • 批准号:
    EP/W035960/1
  • 财政年份:
    2022
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Research Grant
Communication-Aware Dynamic Edge Computing (CONNECT)
通信感知动态边缘计算 (CONNECT)
  • 批准号:
    EP/T023600/1
  • 财政年份:
    2020
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Research Grant
COnsumer-centric Privacy in smart Energy gridS
智能能源网格中以消费者为中心的隐私
  • 批准号:
    EP/N021738/1
  • 财政年份:
    2015
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Standard Grant
CAREER: Evaluating Cooperative Intelligence in Connected Communities
职业:评估互联社区中的合作智能
  • 批准号:
    2339497
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Continuing Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 219.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了