Novel Rechargeable Hybrid Redox Flow Battery Based on Particle-Stabilised Emulsions and H2 carriers

基于颗粒稳定乳液和氢气载体的新型可充电混合氧化还原液流电池

基本信息

  • 批准号:
    EP/X001148/1
  • 负责人:
  • 金额:
    $ 32.97万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Since 2010, the global energy system has experienced drastic changes. Indeed, rapid decrease in the cost of eolian and solar power generation has made renewable power plants competitive with conventional fossil alternatives. This has driven the need for investment in flexible energy storage technologies (i.e., batteries) to manage the variable output from generation sources. Lithium-ion batteries (LIBs) are ubiquitous and dominate the actual power market due to their high volumetric and gravimetric energy densities. However, the high maintenance costs and safety restrictions of LIBs (i.e., high ignition risk), combined with the limited availability and sustainability of lithium/cobalt elements and their reduced life cycles (<10,000), are encouraging other technologies for large-scale stationary energy storage. Redox Flow Batteries (RFBs), with modular design, low maintenance costs, safer chemistry, and long-life cycles (>25,000), emerge as alternative candidates to LIBs for sustainable energy storage/generation in eolian park and solar farms. RFBs will charge from those power generation plants to provide on-demand power to the local grid while helping to decarbonise global electricity systems.Despite the benefits of RFBs, current technologies are today limited by low current/power densities due to low solubility/reversibility of anodic/cathodic electroactive molecules (e.g., vanadium ions). To increase the current/powerdensities of RFBs, current research programs focus on the design of soluble, reversible anodic/cathodic electroactive molecules, as well as organic solvents & inorganic acids, with negative effect on the green footprint of the batteries.The aim of this project is to explore a radically different strategy, impacting the efficiency & green footprint of RFBs, allowing a circular resource-flow. It will design a hybrid RFB, employing an organic H2 carrier couple (AH2/A) in a particle stabilised oil-in-water emulsion as anodic element (generation mode), and air at the cathode. To meet this aim, there are 3 objectives:O1. Preparation of amphiphilic particles with defined sizes, hydrophilic-lipophilic balance, acidity and catalytic functions (i.e. metal centres);O2. Generation of particle-stabilized oil-in-water emulsions with high level of particle recycling and reuse, and survey of the ionic conductivity and emulsion-electrode electron transfer;O3. Engineering a lab-scale hybrid RFB prototype based on particle-stabilised emulsions with high current/power density rechargeability and durability.The present project will design unprecedented rechargeable RFBs with high cell voltage and power density for stationary energy storage/generation, as alternative to poorly sustainable LIBs and state-of-the-art RFBs, without toxic salts,expensive solvents, inorganic acids or surfactants. Moreover, it will address circular economy by employing reversible H2 carriers, that can be regenerated using green H2. It will promote among others deployment of electric personal and public vehicles and will then help to save in average 4.6 tons of CO2 per vehicle and per year.
自2010年以来,全球能源体系经历了剧烈变化。事实上,风能和太阳能发电成本的快速下降使可再生发电厂与传统的化石能源相比具有竞争力。这推动了对灵活储能技术(即电池)的投资需求,以管理发电来源的可变输出。锂离子电池(LIB)因其高的体积和重量能量密度而无处不在,并主导着实际的电力市场。然而,LIB的高维护成本和安全限制(即高点火风险),再加上锂/钴元素的有限可用性和可持续性及其缩短的生命周期(&lt;10,000),正在鼓励其他大规模固定能量存储技术。氧化还原液流电池(RFB)具有模块化设计、低维护成本、更安全的化学成分和长生命周期(&gt;25,000),是风沙公园和太阳能发电场可持续能量存储/发电的替代方案。RFB将从这些发电厂充电,为当地电网提供按需电力,同时帮助全球电力系统脱碳。尽管RFB具有优势,但由于阳极/阴极电活性分子(如钒离子)的低溶解度/可逆性,目前的技术受到低电流/功率密度的限制。为了提高RFB的电流/功率密度,目前的研究计划集中在设计可溶的可逆阳极/阴极电活性分子,以及有机溶剂和无机酸,对电池的绿色足迹产生负面影响。本项目的目的是探索一种完全不同的策略,影响RFB的效率和绿色足迹,允许循环资源流动。它将设计一种混合RFB,在粒子稳定的水包油乳状液中使用有机氢载体对(AH2/A)作为阳极元件(生成模式),并在阴极使用空气。为了实现这一目标,有三个目标:O1。制备具有规定尺寸、亲水亲油平衡、酸性和催化功能(即金属中心)的两亲性颗粒;颗粒稳定的水包油乳状液的研制,具有高水平的颗粒回收和再利用,以及离子电导率和乳状液-电极电子转移的测量;设计一种实验室规模的混合RFB原型,基于具有高电流/功率密度可充电性和耐用性的粒子稳定乳剂。本项目将设计史无前例的具有高电池电压和功率密度的可充电RFB,用于固定能量存储/发电,作为可持续性较差的LIBS和最先进的RFB的替代品,不含有毒盐、昂贵的溶剂、无机酸或表面活性剂。此外,它还将通过使用可逆的氢气载体来解决循环经济问题,这种载体可以使用绿色氢气进行再生。除其他外,它将促进电动个人和公共车辆的部署,然后将有助于每辆车和每年平均减少4.6吨二氧化碳。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Pera-Titus其他文献

Liquid-phase synthesis of isopropyl &lt;em&gt;tert&lt;/em&gt;-butyl ether by addition of 2-propanol to isobutene on the oversulfonated ion-exchange resin Amberlyst-35
  • DOI:
    10.1016/j.apcata.2007.01.048
  • 发表时间:
    2007-04-30
  • 期刊:
  • 影响因子:
  • 作者:
    Marc Pera-Titus;Marta Bausach;Javier Tejero;Montserrat Iborra;Carles Fité;Fidel Cunill;J. Felipe Izquierdo
  • 通讯作者:
    J. Felipe Izquierdo
Meso-Microscale Study of Glycerol/Dodecanol Pickering Emulsions Stabilized by Polystyrene-Grafted Silica Nanoparticles for Interfacial Catalysis
聚苯乙烯接枝二氧化硅纳米颗粒稳定的甘油/十二醇皮克林乳液界面催化的介观微观研究
  • DOI:
    10.1021/acs.jpcc.9b01876
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guolin Zhao;Bing Hong;Bo Bao;Shuangliang Zhao;Marc Pera-Titus
  • 通讯作者:
    Marc Pera-Titus
Characterization of meso- and macroporous ceramic membranes in terms of flux measurement: A moment-based analysis
  • DOI:
    10.1016/j.memsci.2007.06.057
  • 发表时间:
    2007-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Marc Pera-Titus;Joan Llorens
  • 通讯作者:
    Joan Llorens
Amphiphilic Titanosilicates as Pickering Interfacial Catalysts forLiquid-Phase Oxidation Reactions
两亲性钛硅酸盐作为液相氧化反应的 Pickering 界面催化剂
  • DOI:
    10.1021/acs.jpcc.5b07175
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yulin Yang;Wen Juan Zhou;Armin Liebens;Peng Wu;Jean-Marc Clacens;Marc Pera-Titus
  • 通讯作者:
    Marc Pera-Titus
Highly Selective Liquid-Phase Oxidation of Cyclohexane to KA Oil over Ti-MWW Catalyst: Evidence of Formation of Oxyl Radicals
Ti-MWW 催化剂上环己烷高选择性液相氧化为 KA 油:氧自由基形成的证据
  • DOI:
    10.1021/cs400757j
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Raphael Wischert;Kai Xue;Yu-Ting Zheng;Belén Albela;Laurent Bonneviot;Jean-Marc Clacens;Floryan De Campo;Marc Pera-Titus;Peng Wu
  • 通讯作者:
    Peng Wu

Marc Pera-Titus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Pera-Titus', 18)}}的其他基金

Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
  • 批准号:
    EP/Y034392/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Research Grant

相似海外基金

Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
  • 批准号:
    DP240102728
  • 财政年份:
    2024
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Discovery Projects
SBIR Phase II: Rechargeable Carbon-Oxygen Battery for Ultra-Low-Cost Renewable Energy Storage
SBIR第二阶段:用于超低成本可再生能源存储的可充电碳氧电池
  • 批准号:
    2222588
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Cooperative Agreement
Creation and Application of The Next-Generation Rechargeable Battery Anode Materials Starting from Rutile-Type Composite Oxides
以金红石型复合氧化物为原料的下一代充电电池负极材料的制备及应用
  • 批准号:
    23H02065
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The race to net zero necessitates the development of fast-charging and sustainable rechargeable batteries with long lifetimes and high capacity. One p
实现净零排放的竞赛需要开发具有长寿命和高容量的快速充电和可持续充电电池。
  • 批准号:
    2891660
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Studentship
Solar rechargeable Zinc-Bromine Flow Batteries
太阳能可充电锌溴液流电池
  • 批准号:
    DP230100572
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Discovery Projects
Development of Utrasmall Nanoparticles with Rigid Host Structures Toward Magnesium Rechargeable Battery Cathodes
开发具有刚性主体结构的超小纳米粒子用于镁可充电电池阴极
  • 批准号:
    23K13816
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
B-DECENT: Breakthrough Anode-less Rechargeable Aqueous Zinc-ion Batteries
B-DECENT:突破性无阳极可充电水性锌离子电池
  • 批准号:
    EP/Y008707/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Research Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323118
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323119
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323117
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了