Hexagonal Perovskite Derivatives for Next-Generation Ceramic Fuel Cells

用于下一代陶瓷燃料电池的六方钙钛矿衍生物

基本信息

  • 批准号:
    EP/X011941/1
  • 负责人:
  • 金额:
    $ 47.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

To combat climate change, it is predicted that one third of the UK's energy consumption must be hydrogen-based in order to achieve net zero emissions by 2050. Fuel cells will play a key role in achieving this ambitious target. In a fuel cell the chemical reaction between hydrogen and oxygen produces water and electricity, providing a clean alternative to fossil fuels. Ceramic fuel cells are highly efficient, don't require ultra-pure hydrogen and are also 'fuel flexible', meaning that hydrocarbons such as natural gas can also be used as a fuel, but with much lower greenhouse gas emissions compared to petrol or diesel. The ceramic fuel cell can therefore also act as a bridging technology as we move away from fossil fuels. To simplify issues such as sealing, poor lifetime and to enable the use of cheaper steel interconnects, the ceramic fuel cell's operating temperature needs to be reduced from 800 degrees C to an intermediate range of 400-600 degrees C. To reach this goal, new materials that exhibit oxide ion/proton conductivity greater than 10 mS cm-1 at intermediate temperature are needed for the next generation of ceramic hydrogen fuel cells. Such fuel cells will be more cost-effective and have greater longevity and hence will be more economical for replacing fossil fuels for zero-carbon energy generation. Our recent discovery of high oxide ion and proton conductivity at 500 degrees C in the hexagonal perovskite derivative Ba7Nb4MoO20 is ground-breaking as the conductivity is competitive with state-of-the-art materials and it is yet to be tuned. A further advantage of Ba7Nb4MoO20 over state-of-the-art oxide ion and proton conductors is that it is both easy to process and it is highly stable under CO2, H2O and reducing atmospheres. We propose to perform targeted chemical doping and processing studies to further enhance the dual ion conductivity of Ba7Nb4MoO20. This important fundamental research will be transformative as improved materials will enable a step change in the performance of ceramic fuel cells. We will also design and explore the conductivity of further hexagonal perovskite derivatives to build up structure property relationships in this important new family of ionic conductors. These materials are highly complex, and we will use a combined experimental and computational modelling approach to both direct target materials and unravel structure-property relationships in this new class of electrolyte materials. In order to realise the true potential of oxide ion/proton conducting hexagonal perovskites and enable future material design, an in-depth atomistic understanding of the underlying ion transport mechanisms is essential. To gain a comprehensive understanding of the mechanisms of oxide and proton conductivity at both the bulk and microstructural scales in these complex materials, we will also perform computational studies on ion diffusion and defect mechanisms using a powerful combination of molecular dynamics (MD), ab initio (DFT ) and machine learning techniques.
为了应对气候变化,据预测,英国三分之一的能源消耗必须是氢基能源,以便到2050年实现净零排放。燃料电池将在实现这一雄心勃勃的目标方面发挥关键作用。在燃料电池中,氢和氧之间的化学反应产生水和电,为化石燃料提供了一种清洁的替代品。陶瓷燃料电池效率高,不需要超纯氢气,而且还具有“燃料灵活性”,这意味着天然气等碳氢化合物也可以用作燃料,但与汽油或柴油相比,温室气体排放量要低得多。因此,陶瓷燃料电池也可以作为我们远离化石燃料的桥梁技术。为了简化密封、寿命差等问题,并能够使用更便宜的钢互连件,陶瓷燃料电池的工作温度需要从800摄氏度降低到400-600摄氏度的中间范围。为了实现这一目标,需要在中间温度下表现出大于10 mS cm-1的氧化物离子/质子电导率的新材料用于下一代陶瓷氢燃料电池。这种燃料电池将更具成本效益,寿命更长,因此在替代化石燃料以实现零碳能源发电方面将更加经济。我们最近在六方钙钛矿衍生物Ba 7 Nb 4 MoO 20中发现了500 ℃下的高氧化物离子和质子电导率,这是突破性的,因为电导率与最先进的材料具有竞争力,而且还有待调整。Ba 7 Nb 4 MoO 20相对于现有技术的氧化物离子和质子导体的另一个优点是,它易于加工,并且在CO2、H2O和还原气氛下高度稳定。我们建议进行有针对性的化学掺杂和加工研究,以进一步提高Ba 7 Nb 4 MoO 20的双离子导电性。这一重要的基础研究将具有变革性,因为改进的材料将使陶瓷燃料电池的性能发生飞跃性变化。我们还将设计和探索进一步的六方钙钛矿衍生物的导电性,以建立在这个重要的新的离子导体家族的结构性能关系。这些材料非常复杂,我们将使用实验和计算建模相结合的方法来直接靶材料并解开这类新电解质材料的结构-性能关系。为了实现氧化物离子/质子传导六方钙钛矿的真正潜力并实现未来的材料设计,对潜在离子传输机制的深入原子理解至关重要。为了全面了解这些复杂材料在体相和微观结构尺度上的氧化物和质子导电性机制,我们还将使用分子动力学(MD),从头算(DFT)和机器学习技术的强大组合对离子扩散和缺陷机制进行计算研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abbie Mclaughlin其他文献

Abbie Mclaughlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abbie Mclaughlin', 18)}}的其他基金

Many Body Localisation in the Solid State for Finite Temperature Quantum Computing
用于有限温度量子计算的固态多体定位
  • 批准号:
    EP/V047000/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Research Grant
Exploration of Novel Transition Metal Oxyarsenides
新型过渡金属砷化物的探索
  • 批准号:
    EP/L002493/1
  • 财政年份:
    2013
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Research Grant
Colossal Magnetoresistance in Cuprates?
铜氧化物中的巨大磁阻?
  • 批准号:
    EP/F035225/1
  • 财政年份:
    2009
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Standard Grant
Lead-free Perovskite Nanowires for Artificial Photo-synapse Arrays
用于人工光突触阵列的无铅钙钛矿纳米线
  • 批准号:
    DE240100179
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
  • 批准号:
    24K15592
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interface Engineering for Terawatt Scale Deployment of Perovskite-on-Silicon Tandem Solar Cells
硅基钙钛矿串联太阳能电池太瓦级部署的接口工程
  • 批准号:
    EP/X037169/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Research Grant
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Discovery of Entropy-Stabilized Perovskite Halides for Optoelectronics
合作研究:用于光电子学的熵稳定钙钛矿卤化物的设计和发现
  • 批准号:
    2421149
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Continuing Grant
Towards Stable and Highly Efficient Lead-Free Tin-based Perovskite Solar Cells
迈向稳定高效的无铅锡基钙钛矿太阳能电池
  • 批准号:
    23K23457
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Epitaxial stabilization of non-perovskite oxide quantum materials
职业:非钙钛矿氧化物量子材料的外延稳定
  • 批准号:
    2339913
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Continuing Grant
MELISA: Molecular Engineering of Contact Interfaces for Long-Term Stable Perovskite Photovoltaics
MELISA:长期稳定钙钛矿光伏接触界面的分子工程
  • 批准号:
    EP/Z000971/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Fellowship
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了