Heat Transport in Novel 3D Patterned Nanostructures
新型 3D 图案化纳米结构中的热传输
基本信息
- 批准号:EP/X013375/1
- 负责人:
- 金额:$ 51.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Heat is something that all of us are familiar with - we use it to keep us warm and to cook our food. The flow of heat in materials is of fundamental technological importance and imposes constraints on how we design devices. Too little heat often means physical processes cannot activate. Too much heat and most technological systems eventually fail. In our homes, it is the flow of heat that is vital to our comfort, whilst optimising materials for our buildings to reduce heat loss is now of significant importance in tackling global warming and climate change. As such, it is perhaps surprising how little is understood about the flow of heat in materials. In particular, real materials often have complex three-dimensional geometries upon the microscopic scale with a range of interfacial regions. Perhaps the most critical aspect, how heat flows from one material to the next is also one of the aspects which is not well understood. Though studies have started to investigate how heat flows in such real materials and between materials, their success are limited by the lack of controlled model experimental systems that would allow different transport processes to be directly probed. There are several reasons for this. Firstly, when looking at the length scales which are comparable to the average distance heat carriers travel unperturbed, one needs to investigate nanoscale structures. The fabrication of controlled 3D geometries upon the nanoscale is incredibly challenging and to date has limited exploration. Secondly, for a detailed comparison with theory, one needs periodic systems, allowing relevant boundary conditions to be utilised. In this proposal, we will harness state-of-the-art nanofabrication in order to realise materials with controlled 3D geometry and structure. Our methodology, two-photon lithography, allows such 3D geometries to be written by design at a scale of 80nm which can then be translated into another material via electrodeposition. By varying the geometry, size and material, at the length scales of the heat carrier, known as the phonon, we will push our understanding of heat flow and the factors dominating it. We will directly probe the transport of electrons and heat through our unique structures upon the bulk scale and by harness scanning probe microscopy, at the nanoscale. This will provide an unparalleled insight into how nanoscale heat flow impacts bulk thermal properties, with relevant theory providing a foundation for the observations. Ultimately, this study has the potential to not only leap forward our understanding of heat transfer, but also to unlock new ways to control it, with the potential to make new devices, new forms of energy conversion and to develop new tools that help mankind control heat in our lives and our environment.
热是我们所有人都熟悉的东西-我们用它来保持温暖和烹饪食物。材料中的热流动具有基本的技术重要性,并对我们如何设计设备施加了限制。热量太少往往意味着物理过程无法激活。太多的热量和大多数技术系统最终失败。在我们的家中,热量的流动对我们的舒适度至关重要,而优化建筑材料以减少热量损失对于应对全球变暖和气候变化至关重要。正因为如此,人们对材料中的热流知之甚少,这也许是令人惊讶的。特别是,真实的材料通常具有复杂的三维几何形状,在微观尺度上具有一定范围的界面区域。也许最关键的方面,热量如何从一种材料流向下一种材料也是尚未很好理解的方面之一。虽然研究已经开始调查如何在这种真实的材料和材料之间的热量流动,他们的成功是有限的控制模型实验系统的缺乏,将允许不同的传输过程直接探测。这有几个原因。首先,当观察与热载体不受干扰地行进的平均距离相当的长度尺度时,需要研究纳米结构。在纳米尺度上制造受控的3D几何形状是非常具有挑战性的,迄今为止的探索有限。其次,为了与理论进行详细比较,需要周期系统,允许利用相关的边界条件。在这项提案中,我们将利用最先进的纳米纤维来实现具有可控3D几何形状和结构的材料。我们的方法,双光子光刻,允许这样的3D几何形状,以80纳米的规模,然后可以通过电沉积转化为另一种材料的设计写入。通过改变几何形状,大小和材料,在热载体的长度尺度上,称为声子,我们将推动我们对热流和控制它的因素的理解。我们将直接探测电子和热通过我们独特的结构在体尺度上的传输,并通过线束扫描探针显微镜,在纳米尺度上。这将为纳米级热流如何影响整体热特性提供无与伦比的洞察力,相关理论为观察提供了基础。最终,这项研究不仅有可能使我们对热传递的理解发生飞跃,而且有可能解开控制它的新方法,有可能制造新设备,新形式的能量转换,并开发新工具,帮助人类控制我们生活和环境中的热量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gyaneshwar Srivastava其他文献
Gyaneshwar Srivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gyaneshwar Srivastava', 18)}}的其他基金
Phonon Engineering of Nanocomposite Thermoelectric Materials
纳米复合热电材料的声子工程
- 批准号:
EP/H046690/1 - 财政年份:2010
- 资助金额:
$ 51.42万 - 项目类别:
Research Grant
Ab initio study of electrons and phonons in multiferroic BiFeO3
多铁性 BiFeO3 中电子和声子的从头算研究
- 批准号:
EP/E019528/1 - 财政年份:2006
- 资助金额:
$ 51.42万 - 项目类别:
Research Grant
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
- 批准号:31371354
- 批准年份:2013
- 资助金额:90.0 万元
- 项目类别:面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
- 批准号:30870030
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Heat Transport in Novel 3D Patterned Nanostructures
新型 3D 图案化纳米结构中的热传输
- 批准号:
EP/X012735/1 - 财政年份:2023
- 资助金额:
$ 51.42万 - 项目类别:
Research Grant
Heat Transport in Novel 3D Patterned Structures
新型 3D 图案结构中的热传输
- 批准号:
EP/X012840/1 - 财政年份:2023
- 资助金额:
$ 51.42万 - 项目类别:
Research Grant
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2022
- 资助金额:
$ 51.42万 - 项目类别:
Discovery Grants Program - Individual
Nanoscale characterisation of charge and heat transport across interfaces in novel, molecular thermoelectric materials
新型分子热电材料中跨界面电荷和热传输的纳米级表征
- 批准号:
2606579 - 财政年份:2021
- 资助金额:
$ 51.42万 - 项目类别:
Studentship
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2021
- 资助金额:
$ 51.42万 - 项目类别:
Discovery Grants Program - Individual
Development of novel heat conduction control method on the basis of the clarification of thermal transport modulation by external electric field and charge injection
在阐明外部电场和电荷注入热传输调制的基础上开发新型热传导控制方法
- 批准号:
20H02080 - 财政年份:2020
- 资助金额:
$ 51.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design and evaluation of a novel heat utilization system with thermal energy storage and transport expanding the area of waste heat recovery
一种新型热利用系统的设计和评估,该系统具有热能存储和传输功能,扩大了余热回收的范围
- 批准号:
20K23360 - 财政年份:2020
- 资助金额:
$ 51.42万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2020
- 资助金额:
$ 51.42万 - 项目类别:
Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2019
- 资助金额:
$ 51.42万 - 项目类别:
Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2018
- 资助金额:
$ 51.42万 - 项目类别:
Discovery Grants Program - Individual