Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
基本信息
- 批准号:RGPIN-2020-06137
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Poor heat dissipation is one of the fundamental limiters of device performance and strongly influences device failure. In highly integrated electronic devices such as lasers, transistors and sensors, high current densities generate intense localized heat that can not only alter material properties, but also lead to irreversible structural changes. Mitigating these effects at the macroscopic scale has allowed the commercialization of ever more capable electronic, photonic and data storage systems. However, at the microscopic device level the presence of interfaces, insulators or geometric confinement pose severe limitations to our ability to dispose waste heat and evolve technologies that are central to computing systems, communication systems, and manufacturing. In our increasingly more digital lifestyles, our reliance on ever growing amounts of digital information will greatly benefit from radical shifts in the way data is processed, stored and communicated that goes beyond today's economies of scale. In other words, revolutionary improvements in electronic devices will allow faster technological progress with fewer incremental resources. The study of nanoscale heat transport can therefore affect a myriad of applications.
The scientific community is still developing an understanding of the processes driving heat transport at the nanoscale, where microscopic processes such as non-classical energy transfer, interaction between electrons and crystal vibrations and finite size effects become important. While important challenges in the field remain, such as how to alleviate the heat dissipation bottleneck in electronic devices, an intriguing question surfaces: how can we exploit the different way heat conducts at the nanoscale to our advantage? The emergence of new classes of materials such as 2-dimensional crystals, organic/inorganic nanoscale composites and atomically layered metal compounds are presenting opportunities for different devices based on their electronic and magnetic properties and are also very interesting due to their highly directional heat transport, which can be used to channel heat where convenient. Non-classical phenomena can limit the dissipation of heat, but recently it was shown that in some cases an enhancement is possible. The study of crystals with highly directional and non-classical energy transport can therefore provide an unprecedented tuning knob for opto-electronic devices, sensing, energy harvesting and data storage technologies.
The proposed research will address heat transport challenges and opportunities for photonic devices, next generation data storage technologies, devices and materials composted of 2-dimensional crystals. This work will leverage existing international collaborations with academia and the data storage industry. The impact of this work will in the long run transform our rapidly growing electronic, computing and telecommunications infrastructure.
散热不良是器件性能的基本限制因素之一,并严重影响器件故障。在激光器、晶体管和传感器等高度集成的电子设备中,高电流密度会产生强烈的局部热,不仅会改变材料特性,还会导致不可逆的结构变化。在宏观尺度上减轻这些影响已经允许更有能力的电子、光子和数据存储系统的商业化。然而,在微观器件层面,界面、绝缘体或几何约束的存在严重限制了我们处理废热和发展计算系统、通信系统和制造业核心技术的能力。在我们日益数字化的生活方式中,我们对不断增长的数字信息的依赖将大大受益于数据处理、存储和通信方式的根本转变,这种转变超越了当今的规模经济。换句话说,电子设备的革命性改进将允许以更少的增量资源实现更快的技术进步。因此,对纳米级热传输的研究可以影响无数的应用。
科学界仍在发展对纳米尺度下驱动热传输的过程的理解,其中微观过程,如非经典能量转移,电子和晶体振动之间的相互作用以及有限尺寸效应变得重要。虽然该领域的重要挑战仍然存在,例如如何缓解电子设备中的散热瓶颈,但一个有趣的问题浮出水面:我们如何利用纳米尺度下不同的热传导方式来为我们服务?新型材料的出现,如二维晶体,有机/无机纳米级复合材料和原子层状金属化合物,为基于其电子和磁性的不同器件提供了机会,并且由于其高度定向的热传输,可以用于方便地引导热量,因此也非常有趣。非经典现象可以限制热量的耗散,但最近表明,在某些情况下,增强是可能的。因此,对具有高度方向性和非经典能量传输的晶体的研究可以为光电器件、传感、能量收集和数据存储技术提供前所未有的调谐旋钮。
拟议的研究将解决光子器件、下一代数据存储技术、二维晶体合成的器件和材料的热传输挑战和机遇。这项工作将利用与学术界和数据存储行业的现有国际合作。从长远来看,这项工作的影响将改变我们迅速发展的电子、计算和电信基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pisana, Simone其他文献
Breakdown of the adiabatic Born-Oppenheimer approximation in graphene
- DOI:
10.1038/nmat1846 - 发表时间:
2007-03-01 - 期刊:
- 影响因子:41.2
- 作者:
Pisana, Simone;Lazzeri, Michele;Mauri, Francesco - 通讯作者:
Mauri, Francesco
Enhanced B2 Ordering of FeRh Thin Films Using B2 NiAl Underlayers
- DOI:
10.1109/tmag.2011.2157963 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:2.1
- 作者:
Kande, Dhishan;Pisana, Simone;Zhu, Jian-Gang - 通讯作者:
Zhu, Jian-Gang
Importance of quadratic dispersion in acoustic flexural phonons for thermal transport of two-dimensional materials
- DOI:
10.1103/physrevb.103.235426 - 发表时间:
2021-06-22 - 期刊:
- 影响因子:3.7
- 作者:
Taheri, Armin;Pisana, Simone;Singh, Chandra Veer - 通讯作者:
Singh, Chandra Veer
Enhanced subthreshold slopes in large diameter single wall carbon nanotube field effect transistors
- DOI:
10.1109/tnano.2008.917849 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:2.4
- 作者:
Pisana, Simone;Zhang, Can;Robertson, John - 通讯作者:
Robertson, John
Improved Magneto-Optic Surface Plasmon Resonance Biosensors
- DOI:
10.3390/photonics5030015 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:2.4
- 作者:
Rizal, Conrad;Pisana, Simone;Hrvoic, Ivan - 通讯作者:
Hrvoic, Ivan
Pisana, Simone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pisana, Simone', 18)}}的其他基金
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Electromagnetic hazardous spill retention system
电磁危险泄漏保留系统
- 批准号:
543542-2019 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Design and optimization of heat dissipation and illumination patterns in novel recessed chip-on-board designs for high-power LED lighting applications
针对高功率 LED 照明应用的新型嵌入式芯片级设计中的散热和照明模式的设计和优化
- 批准号:
521640-2017 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Nanopore Array for Multiparameter Analysis of Single Extracellular Vesicles
用于单个细胞外囊泡多参数分析的纳米孔阵列
- 批准号:
10760154 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
- 批准号:
23K13818 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
- 批准号:
10522560 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
- 批准号:
10703469 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Dual Role of HSP70 in Diabetes-Induced Vascular Dysfunction
HSP70 在糖尿病引起的血管功能障碍中的双重作用
- 批准号:
10515009 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Nanoscale characterisation of charge and heat transport across interfaces in novel, molecular thermoelectric materials
新型分子热电材料中跨界面电荷和热传输的纳米级表征
- 批准号:
2606579 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Ultimate Suppression of Nanoscale Heat Transport with Quasi-phononic Crystal
准声子晶体对纳米级热传输的终极抑制
- 批准号:
21K14089 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Using ferroelectric domain walls for active control of heat flow at the nanoscale
使用铁电畴壁主动控制纳米级热流
- 批准号:
MR/T043172/1 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Fellowship