EYE-SCREEN-4-DPN: Development of an innovative Intelligent EYE imaging solution for SCREENing of Diabetic Peripheral Neuropathy
EYE-SCREEN-4-DPN:开发创新的智能眼部成像解决方案,用于筛查糖尿病周围神经病变
基本信息
- 批准号:EP/X01441X/1
- 负责人:
- 金额:$ 129.97万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Diabetes is a major global problem, affecting over 4.9 million people in the UK. Diabetes costs >£10 billion per annum (~10% of the NHS budget) and 80% of these costs are due to diabetes complications, of which diabetic peripheral neuropathy (DPN) is the commonest. DPN is is nerve damage caused by diabetes and can lead to numbness, loss of sensation, nerve-related pain in the feet, legs, and hands. DPN is also responsible for 50-75% of non-traumatic limb amputations due end stage sequelae of foot ulceration and eventual infection. Screening of DPN will improve care by enabling early intervention where DPN is more readily reversible. At present, there is no effective screening programme for DPN due to a lack of sensitive, scalable population-based tests. First, there are no reliable, easy-to-use and accurate diagnostic tools fit for DPN screening (thus detecting early DPN). Current routine diagnostic tests are subjective or invasive or inability to assess small nerve fibres (the earliest nerve fibres to be affected). Our group has pioneered the use of a non-invasive eye test, namely corneal confocal microscopy (CCM) to image the corneal nerves (nerves at the front of the eye). CCM is an excellent test for the assessment of early DPN. However, the use of CCM for DPN screening has been hindered due to the need for direct contact with the cornea, patient discomfort, very small field of view, prolonged examination time, and requiring a high level of operational skills. The other challenge is the lack of automated, low-cost, reliable and accurate ways detect DPN and predict the occurrence of DPN from corneal nerve images. Manual assessment is expensive and prone to errors due to subjectiveness. We have brought together a group of world-class engineers, scientists, clinicians with extensive experience in their respective fields to develop the first kind of integrated intelligent imaging solution tailored to the needs of DPN screening. The specific objectives are1. To develop a step-change ultrahigh resolution optical coherence tomography (OCT) device to replace and overcome the limitations of CCM for non-contact imaging the corneal nerves. OCT is a fast, non-invasive, non-contact imaging technique that widely used in eye clinics including community optometrists. However, current clinical OCT devices lack the resolution to image the corneal nerves. Based on our patented OCT technology, we will develop a new optical configuration to achieve the desired resolving power and speed for imaging the corneal nerves with a large field of view, and achieve fully automatic image acquisition.2. To develop new intelligent algorithms (software) to detect and predict DPN at the point-of-care. The ability to analyse a large amount of differing types of clinical data collected over time (longitudinal data) including images remains a challenge. By leveraging the recent advances in artificial intelligence, we will produce tools capable of distinguishing between patients with and without DPN, people who will progress to DPN, and in those which it will worsen thus enabling personalised care and clinical management. 3. To produce a prototype DPN screening solution integrating the OCT device and the AI detection and prediction (diagnostic/prognostic). This innovative intelligent imaging solution will be deployable and clinician-friendly. 4. To confirm the performance of the developed innovative technologies in healthy volunteers and people with diabetes (with and without DPN) at the Aintree University Hospital, a centre of clinical excellence in DPN and CCM research.In summary, our immediate goal of this ambitious project is an innovative DPN screening solution, whilst the long-term goal is a fully clinically utilised technology which can be commercialised. Early detection and timely treatment of DPN by our innovations will prevent disability and save lives with substantial benefit to the UK's society and economy.
糖尿病是一个主要的全球性问题,在英国影响超过490万人。糖尿病每年花费> 100亿英镑(约占NHS预算的10%),其中80%的费用是由于糖尿病并发症,其中糖尿病周围神经病变(DPN)是最常见的。DPN是由糖尿病引起的神经损伤,可导致麻木,感觉丧失,脚,腿和手的神经相关疼痛。DPN还导致50-75%的非创伤性截肢,这是由于足部溃疡和最终感染的终末期后遗症。DPN筛查将通过早期干预改善护理,DPN更容易逆转。目前,由于缺乏敏感的、可扩展的基于人群的测试,没有有效的DPN筛查计划。首先,没有可靠、易于使用和准确的诊断工具适合DPN筛查(从而检测早期DPN)。目前的常规诊断测试是主观的或侵入性的,或无法评估小神经纤维(最早受到影响的神经纤维)。我们的团队率先使用非侵入性眼科测试,即角膜共焦显微镜(CCM)来成像角膜神经(眼睛前部的神经)。CCM是评估早期DPN的一个很好的测试。然而,由于需要直接接触角膜、患者不适、视野非常小、检查时间延长以及需要高水平的操作技能,CCM用于DPN筛查受到阻碍。另一个挑战是缺乏自动化、低成本、可靠和准确的方法来检测DPN并从角膜神经图像预测DPN的发生。人工评估成本高,而且由于主观性而容易出错。我们汇集了一批在各自领域具有丰富经验的世界级工程师、科学家、临床医生,开发出第一种针对DPN筛查需求量身定制的集成智能成像解决方案。具体目标是1。目的:研制一种阶跃式高分辨率光学相干断层扫描(OCT)装置,以取代并克服CCM对角膜神经进行非接触成像的局限性。OCT是一种快速、无创、非接触的成像技术,广泛应用于眼科诊所,包括社区验光师。然而,目前的临床OCT设备缺乏对角膜神经成像的分辨率。基于我们的专利OCT技术,我们将开发一种新的光学配置,以达到大视野下角膜神经成像所需的分辨率和速度,并实现全自动图像采集。2.开发新的智能算法(软件),以在床旁检测和预测DPN。分析随时间收集的大量不同类型的临床数据(纵向数据)(包括图像)的能力仍然是一个挑战。通过利用人工智能的最新进展,我们将开发能够区分DPN患者和非DPN患者的工具,这些患者将发展为DPN,并且在那些患者中会恶化,从而实现个性化护理和临床管理。 3.生产集成OCT设备和AI检测和预测(诊断/预后)的原型DPN筛查解决方案。这种创新的智能成像解决方案将是可部署的和临床医生友好的。4.为了证实在健康志愿者和糖尿病患者(有和没有DPN)中开发的创新技术的性能,在Aintree大学医院,DPN和CCM研究的临床卓越中心。总之,我们这个雄心勃勃的项目的近期目标是一个创新的DPN筛查解决方案,而长期目标是一个完全临床应用的技术,可以商业化。通过我们的创新,DPN的早期发现和及时治疗将预防残疾并挽救生命,为英国的社会和经济带来实质性利益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yalin Zheng其他文献
Cerebral vascular enhancement using a weighted 3D symmetry filter
使用加权 3D 对称滤波器增强脑血管
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lingling Luo;Yitian Zhao;Jian Yang;Yalin Zheng;Siyuan Yang;Danni Ai;Yongtian Wang - 通讯作者:
Yongtian Wang
Age-Related Macular Degeneration Screening Using Data Mining Approaches
使用数据挖掘方法进行年龄相关性黄斑变性筛查
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Hijazi;Frans Coenen;Yalin Zheng - 通讯作者:
Yalin Zheng
Linking Structure and Function: Image-Based Virtual Populations of the Retinal Vasculature
连接结构和功能:基于图像的视网膜脉管系统虚拟群体
- DOI:
10.1101/2023.12.05.570054 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Hernández;S. Madhusudhan;Yalin Zheng;Wahbi K. El - 通讯作者:
Wahbi K. El
Quasi-tomography by free space line field spectral domain optical coherence reflectometry
自由空间线场谱域光学相干反射准层析成像
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.4
- 作者:
S. Lawman;Bryan M. Williams;Yalin Zheng;Yaochun Shen - 通讯作者:
Yaochun Shen
Automated Retinal Lesion Detection via Image Saliency Analysis
通过图像显着性分析自动检测视网膜病变
- DOI:
10.1002/mp.13746 - 发表时间:
2019 - 期刊:
- 影响因子:3.8
- 作者:
Qifeng Yan;Yitian Zhao;Yalin Zheng;Yonghuai Liu;Kang Zhou;Alej;ro Frangi;Jiang Liu - 通讯作者:
Jiang Liu
Yalin Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yalin Zheng', 18)}}的其他基金
Development of New Low Cost Point of Care Diagnostic Technologies for Diabetic Retinopathy in China
中国糖尿病视网膜病变新型低成本护理诊断技术的开发
- 批准号:
EP/R014094/1 - 财政年份:2018
- 资助金额:
$ 129.97万 - 项目类别:
Research Grant
相似国自然基金
基于CRISPR-Screen模型对肿瘤相关巨噬细胞通过GFRA1非经典途径促进胃癌肝转移的机制探索
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
EAGER: A Genome Wide HDR Enhancement Screen in Maize
EAGER:玉米全基因组 HDR 增强屏幕
- 批准号:
2409037 - 财政年份:2024
- 资助金额:
$ 129.97万 - 项目类别:
Standard Grant
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
$ 129.97万 - 项目类别:
EU-Funded
(SCIN) Screen Internationalism: Audiovisual Pedagogies of Modernisation between Postwar Europe and Latin America
(SCIN) 银幕国际主义:战后欧洲和拉丁美洲之间现代化的视听教育学
- 批准号:
EP/Y015088/1 - 财政年份:2024
- 资助金额:
$ 129.97万 - 项目类别:
Fellowship
Signs on Screen: Language, Culture and Power in Sign Language Cinema
屏幕上的手语:手语电影中的语言、文化和力量
- 批准号:
DE230100070 - 财政年份:2023
- 资助金额:
$ 129.97万 - 项目类别:
Discovery Early Career Researcher Award
Virtual drug screen reveals context-dependent inhibition of cardiomyocyte hypertrophy
虚拟药物筛选揭示了心肌细胞肥大的情境依赖性抑制
- 批准号:
10678351 - 财政年份:2023
- 资助金额:
$ 129.97万 - 项目类别:
Rapid Point of Care Test to Screen Human Papillomavirus in Low-Resource Settings
在资源匮乏的环境中筛查人乳头瘤病毒的快速护理点测试
- 批准号:
10897682 - 财政年份:2023
- 资助金额:
$ 129.97万 - 项目类别:
Teen screen diets and their relationships with dietary intake: setting the stage for precision interventions and evidence-based policies
青少年筛查饮食及其与饮食摄入的关系:为精准干预和循证政策奠定基础
- 批准号:
10718906 - 财政年份:2023
- 资助金额:
$ 129.97万 - 项目类别:
Aston University and Blue Screen IT Limited KTP 22_23 R2
阿斯顿大学和 Blue Screen IT Limited KTP 22_23 R2
- 批准号:
10035303 - 财政年份:2023
- 资助金额:
$ 129.97万 - 项目类别:
Knowledge Transfer Partnership
Mobile technologies to screen for prediabetes and type 2 diabetes in asymptomatic adults
用于筛查无症状成人糖尿病前期和 2 型糖尿病的移动技术
- 批准号:
10660714 - 财政年份:2023
- 资助金额:
$ 129.97万 - 项目类别: