Stochastic Numerics for Sampling on Manifolds
用于流形采样的随机数值
基本信息
- 批准号:EP/X022617/1
- 负责人:
- 金额:$ 10.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The digital era has led to the increasing availability of highly-structured data such as social media graphs and networks, ratings and recommender system data from online retail and streaming platforms, and high-resolution medical images. Such data are characterised by non-trivial constraints (not everyone but only friends and family form a group within a network; shape of the imaged brain is unchanged under rotations of the image), and the sheer scale and complexity associated with storing and analysing such data necessitate the use of probabilistic models to mimic the manner in which the data were generated. Fundamental to successful practical use of probabilistic models for highly-structured data is sampling, or generating random data, from geometrically constrained spaces known as manifolds. State-of-the-art in efficient sampling, backed by theoretical guarantees, within this nascent area is restricted to cases where the manifold is smooth without a boundary or the sampling distribution belongs to a class that is particularly amenable for theoretical analysis. This excludes many important problems one routinely encounters in AI and statistical applications, including low-rank matrix completion (predicting user ratings for Netflix movies) and analysing shapes of objects (computing a representative tumour shape from medical images). To this end, the overarching goal of this timely project is to develop and analyse methods to sample from a general class of manifolds and distributions using ergodic stochastic differential equations. Positioned at the interface of stochastics, numerical analysis and geometry, the project will make a major contribution to the advancement of numerical methods for SDEs on manifolds and thus open up the possibility to efficiently analyse complex, geometric data.
数字时代导致高度结构化数据的可用性越来越高,例如社交媒体图表和网络,来自在线零售和流媒体平台的评级和推荐系统数据以及高分辨率医学图像。这些数据的特点是非平凡的约束(不是每个人,但只有朋友和家人在网络中形成一个组;图像的形状在图像的旋转下是不变的),并且与存储和分析这些数据相关的庞大规模和复杂性需要使用概率模型来模拟数据生成的方式。成功地将概率模型用于高度结构化数据的基础是从被称为流形的几何约束空间中采样或生成随机数据。国家的最先进的有效采样,理论保证的支持下,在这个新生的领域是有限的情况下,流形是光滑的,没有边界或采样分布属于一类,特别是适合理论分析。这排除了人工智能和统计应用中经常遇到的许多重要问题,包括低秩矩阵完成(预测Netflix电影的用户评分)和分析对象的形状(从医学图像中计算代表性的肿瘤形状)。为此,这个及时的项目的首要目标是开发和分析方法,从一般类的流形和分布使用遍历随机微分方程进行采样。定位在随机,数值分析和几何的接口,该项目将作出重大贡献的数值方法的进步SDES流形,从而开辟了可能性,有效地分析复杂的几何数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Tretyakov其他文献
Michael Tretyakov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Tretyakov', 18)}}的其他基金
Multilevel Monte Carlo Methods for Elliptic Problems with Applications to Radioactive Waste Disposal
椭圆问题的多级蒙特卡罗方法及其在放射性废物处置中的应用
- 批准号:
EP/H051589/1 - 财政年份:2011
- 资助金额:
$ 10.22万 - 项目类别:
Research Grant
NUMERICS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE
抛物型随机偏微分方程的数值模拟
- 批准号:
EP/D049792/1 - 财政年份:2007
- 资助金额:
$ 10.22万 - 项目类别:
Research Grant
相似海外基金
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 10.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
- 批准号:
EP/W033917/1 - 财政年份:2023
- 资助金额:
$ 10.22万 - 项目类别:
Research Grant
CFTSPEC: Spectra of Conformal Theories: From Trajectories, Colliders, and Numerics
CFTSPEC:共形理论谱:来自轨迹、碰撞器和数值
- 批准号:
EP/X042618/1 - 财政年份:2023
- 资助金额:
$ 10.22万 - 项目类别:
Research Grant
Conference: Stochastic Control for Financial Engineering: Methods and Numerics
会议:金融工程的随机控制:方法和数值
- 批准号:
2304414 - 财政年份:2023
- 资助金额:
$ 10.22万 - 项目类别:
Standard Grant
Numerics and Mathematical Analysis for micro-phase separated patterns of polymer nanoparticles
聚合物纳米颗粒微相分离模式的数值和数学分析
- 批准号:
23K03209 - 财政年份:2023
- 资助金额:
$ 10.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical Systems: Modelling, Analysis, and Numerics
动力系统:建模、分析和数值
- 批准号:
RGPIN-2020-03954 - 财政年份:2022
- 资助金额:
$ 10.22万 - 项目类别:
Discovery Grants Program - Individual
Rigorously Verified Numerics for High Dimensional Dynamics
经过严格验证的高维动力学数值
- 批准号:
RGPIN-2018-04834 - 财政年份:2022
- 资助金额:
$ 10.22万 - 项目类别:
Discovery Grants Program - Individual
Numerics for quantum gravity effects in black holes
黑洞中量子引力效应的数值
- 批准号:
561804-2021 - 财政年份:2021
- 资助金额:
$ 10.22万 - 项目类别:
University Undergraduate Student Research Awards
Dynamical Systems: Modelling, Analysis, and Numerics
动力系统:建模、分析和数值
- 批准号:
RGPIN-2020-03954 - 财政年份:2021
- 资助金额:
$ 10.22万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Understanding the Turbulent Dynamics of Convective Bursts and Tropical Cyclone Intensification Using Large Eddy Simulations and High-Order Numerics
合作研究:利用大涡模拟和高阶数值了解对流爆发和热带气旋增强的湍流动力学
- 批准号:
2121366 - 财政年份:2021
- 资助金额:
$ 10.22万 - 项目类别:
Standard Grant