CFTSPEC: Spectra of Conformal Theories: From Trajectories, Colliders, and Numerics

CFTSPEC:共形理论谱:来自轨迹、碰撞器和数值

基本信息

  • 批准号:
    EP/X042618/1
  • 负责人:
  • 金额:
    $ 164.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Conformal Field Theory (CFT) is a modern theoretical framework which allows us to reason about an extremely wide variety of physical phenomena, ranging from phases of matter to quantum gravity. Most important examples of CFTs are extremely complex, strongly-coupled systems. One of the great challenges in theoretical physics is developing efficient tools for such systems. The Conformal Bootstrap emerged in recent years as an extremely successful and general approach. Yet, there are many important CFTs, for example Quantum Chromodynamics in its conformal window, or CFTs that violate unitarity, which are currently out of reach.Furthermore, we do not know if there is a universal structure in the spectrum of general CFTs, or to what extent the structures that wesuspect to exist actually do. CFTSPEC will utilize new techniques within the conformal bootstrap and beyond to address these questions and greatly expand our understanding of CFTs. It will combine numerical and analytical, perturbative and non-perturbative approaches to constrain and classify CFTs, and to gain new insight into their fundamental properties. On the numerical side, CFTSPEC will use novel numerical bootstrap techniques to access poorly-understood CFTs. On the analytical side, CFTSPEC will develop a detailed theory of light-ray operators, both through a new connection to infrared divergences of scattering amplitudes, as well as through the interplay with numerical and more traditional analytic methods. The outcomes of CFTSPEC will include precise numerical results for experimentally relevant CFTs, universal constraints on the space of all CFTs, as well as a major advance in the understanding of their fundamental properties and spectra.CFTSPEC combines several very distinct approaches to conformal field theory. My expertise and track record in all of them place me in a unique position to lead this project and to deliver the groundbreaking results that CFTSPEC envisions.
共形场论(CFT)是一个现代理论框架,它使我们能够对各种各样的物理现象进行推理,从物质的相位到量子引力。cft最重要的例子是极其复杂的强耦合系统。理论物理学的一个巨大挑战是为这样的系统开发有效的工具。共形引导是近年来出现的一种非常成功和通用的方法。然而,有许多重要的cft,例如保形窗口中的量子色动力学,或者违反统一的cft,目前还无法达到。此外,我们不知道在一般CFTs的光谱中是否存在一个普遍的结构,或者我们怀疑存在的结构在多大程度上确实存在。CFTSPEC将利用共形引导和其他方面的新技术来解决这些问题,并极大地扩展我们对cft的理解。它将结合数值和解析、微扰和非微扰方法来约束和分类cft,并获得对其基本性质的新见解。在数值方面,CFTSPEC将使用新颖的数值引导技术来访问难以理解的cft。在分析方面,CFTSPEC将通过与散射振幅的红外发散的新联系,以及通过与数值和更传统的分析方法的相互作用,发展光线算子的详细理论。CFTSPEC的结果将包括实验相关cft的精确数值结果,所有cft空间的普遍约束,以及对其基本性质和光谱的理解的重大进展。CFTSPEC结合了几种非常不同的共形场理论方法。我在所有这些方面的专业知识和业绩记录使我处于一个独特的位置,可以领导这个项目,并交付CFTSPEC设想的突破性成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Petr Kravchuk其他文献

Petr Kravchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

利用AATSR和SPECTRA联合反演植被组分温度的方法研究
  • 批准号:
    40471095
  • 批准年份:
    2004
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on High-Precision Real-Gas Aerodynamics Prediction Technique Using High-Speed Vacuum Ultraviolet Absorption Spectra Fitting Method
高速真空紫外吸收光谱拟合法高精度真气气动预测技术研究
  • 批准号:
    23H01613
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fast, Cost-Effective and Fully Automated Structure Verification through Synergistic Use of Infrared and NMR Spectra
通过红外和核磁共振光谱的协同使用进行快速、经济高效的全自动结构验证
  • 批准号:
    2894203
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Studentship
Comparative Study of the High Harmonic Spectra of Transition Metal Compounds
过渡金属化合物高次谐波谱的比较研究
  • 批准号:
    2309321
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Standard Grant
Conference: Groups of dynamical origin, automata and spectra
会议:动力学起源、自动机和谱组
  • 批准号:
    2309562
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Standard Grant
RAISE: ADAPT : Novel AI/ML methods to derive CMB temperature and polarization power spectra from uncleaned maps
RAISE:ADAPT:从未清理的地图中导出 CMB 温度和偏振功率谱的新颖 AI/ML 方法
  • 批准号:
    2327245
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Standard Grant
Quantum Vibrational Spectra of Hydrogen in Materials by Ab Initio Semiclassical Molecular Dynamics
利用从头算半经典分子动力学研究材料中氢的量子振动光谱
  • 批准号:
    23K04670
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on absolutely continuous diffraction and dynamical spectra for S-adic tilings
S-adic平铺的绝对连续衍射和动力学光谱研究
  • 批准号:
    23K12985
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Multi-layering Techniques for Nanomaterial Thin Films towards Precise Control of Thermal Radiation Spectra
开发纳米材料薄膜多层技术以实现热辐射光谱的精确控制
  • 批准号:
    23KJ1390
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
RUI: Imaging and Spectra at the 2023 and 2024 Total Solar Eclipses
RUI:2023 年和 2024 年日全食的成像和光谱
  • 批准号:
    2225960
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Standard Grant
Equidistribution in Arithmetic: Dynamics, Geometry and Spectra
算术中的均匀分布:动力学、几何和谱
  • 批准号:
    2302592
  • 财政年份:
    2023
  • 资助金额:
    $ 164.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了