Three-dimensional hybrid guidance system for cardiac interventional procedures
心脏介入手术三维混合引导系统
基本信息
- 批准号:EP/X023826/1
- 负责人:
- 金额:$ 35.03万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Minimally invasive cardiac surgeries are the common treatment for cardiovascular disease, involving the insertion of flexible devices (e.g. catheters or stents) into heart chambers. X-ray fluoroscopy is currently used to guide surgeons as the devices are highly visible under X-rays and modern X-ray systems provide real-time (i.e. with no lag) imaging, a large field-of-view and excellent image resolution. However, X-ray images offer very little anatomical information as surgeons cannot see where the heart chamber is and its surrounding blood vessels, unless contrast agents are injected. Furthermore, X-ray images are 2D images and so objects inside the image could overlap each other making it difficult to determine the accurate position of devices relative to the complex heart anatomy. This results in extended procedure times and thus additional harmful radiation doses. To add this anatomical information, hybrid guidance systems have been developed which combine the X-ray information with other information (e.g. from computerised tomography) to add the shadows or contours on the top of the X-ray images. The drawbacks of these systems are that they still heavily rely on X-ray fluoroscopic images to provide guidance, and all information is still 2D.The aim of this project is to develop a new 3D hybrid guidance system superior to these existing approaches. It will provide 3D information to surgeons, increasing their efficiency and thus reducing X-ray exposure. It will also use additional 3D guidance equipment such as the electroanatomical mapping (EAM) system to reduce the frequency of X-ray images, and so further reduce X-ray exposure. The EAM system uses a weak magnetic field rather than harmful X-ray radiation and so it can be switched on throughout the procedure. The primary use of the EAM system is to map electrophysiological activities within the heart. But it also can track catheters within a heart chamber and create low-resolution 3D models of heart chambers. It is not possible to visualise the 3D blood vessel structures clearly when using the EAM system and also some of devices such as stents and balloons might not be tracked. Hence the need for the proposed hybrid system with X-ray information.To develop this system we will use advanced computer vision techniques to detect devices and extract 3D blood vessel models from X-ray images, and then fuse these with existing 3D models inside the EAM system to provide the completed information to guide the procedure. Due to the high-level of noise present in low-dose X-ray images and the interference from overlapping objects, it is a challenging task to achieve accurate and robust detection in real-time. To meet the challenges, a novel approach is proposed to simultaneously detect the electrode catheters by the electrode pattern and the device on the wire by an image classifier. Since all devices are objects attached to the wires, our learning-base image classifiers will only need to search the areas along the wire-like objects. Furthermore, our approach will also be able to solve the challenge of the accurate alignment between 3D models in two systems measured in different coordinate systems. The alignment is based on tracking the 3D position of the same device in both an EAM system and an X-ray system. As it is possible to use the EAM system as the main guidance tool and use less frequent X-ray images, our proposed system will significantly reduce X-ray radiation exposure. This will benefit patients as X-ray radiation might cause the cancer in their later life. We will partner with Abbott Medical UK Ltd, and aim to develop and adapt our approach using Abbott's EAM system so that a research prototype can be made in the near future. But our theoretical contributions will not limited to the EAM system, and could be used to hybridise X-ray images with other image-guidance systems, such as the 3D echo imaging, as well as future robotic surgery systems.
微创心脏手术是心血管疾病的常见治疗方法,涉及将柔性装置(例如导管或支架)插入心腔。X射线荧光透视目前用于指导外科医生,因为这些器械在X射线下高度可见,并且现代X射线系统提供实时(即无滞后)成像、大视场和出色的图像分辨率。然而,X射线图像提供的解剖信息非常少,因为外科医生无法看到心室及其周围血管的位置,除非注射造影剂。此外,X射线图像是2D图像,因此图像内的对象可能彼此重叠,使得难以确定设备相对于复杂心脏解剖结构的准确位置。这导致手术时间延长,从而导致额外的有害辐射剂量。为了添加该解剖信息,已经开发了混合引导系统,其将X射线信息与其他信息(例如,来自计算机化断层摄影)组合以在X射线图像的顶部添加阴影或轮廓。这些系统的缺点是,它们仍然严重依赖于X射线透视图像来提供引导,所有的信息仍然是二维的。本项目的目的是开发一种新的三维混合引导系统优于这些现有的方法上级。它将为外科医生提供3D信息,提高他们的效率,从而减少X射线照射。它还将使用额外的3D引导设备,如电解剖标测(EAM)系统,以减少X射线图像的频率,从而进一步减少X射线照射。EAM系统使用弱磁场而不是有害的X射线辐射,因此可以在整个过程中打开。EAM系统的主要用途是标测心脏内的电生理活动。但它也可以跟踪心腔内的导管,并创建心腔的低分辨率3D模型。当使用EAM系统时,不可能清楚地可视化3D血管结构,并且可能无法跟踪一些器械,例如支架和球囊。因此,需要提出的混合系统与X射线信息。为了开发这个系统,我们将使用先进的计算机视觉技术来检测设备,并从X射线图像中提取3D血管模型,然后将这些与EAM系统内现有的3D模型融合,以提供完整的信息来指导手术。由于低剂量X射线图像中存在高水平的噪声和来自重叠对象的干扰,实现实时准确和鲁棒的检测是一项具有挑战性的任务。为了应对这些挑战,提出了一种新的方法,通过电极图案同时检测电极导管和通过图像分类器检测导线上的设备。由于所有设备都是连接到电线上的对象,因此我们的基于学习的图像分类器只需要搜索沿着电线状对象的区域。此外,我们的方法也将能够解决在不同坐标系中测量的两个系统中的3D模型之间的准确对齐的挑战。该对准基于在EAM系统和X射线系统中跟踪同一设备的3D位置。由于可以使用EAM系统作为主要的指导工具,并使用较低频率的X射线图像,我们提出的系统将显着减少X射线辐射暴露。这将使患者受益,因为X射线辐射可能会在他们以后的生活中导致癌症。我们将与雅培医疗英国有限公司合作,旨在使用雅培的EAM系统开发和调整我们的方法,以便在不久的将来制作研究原型。但我们的理论贡献将不仅限于EAM系统,还可用于将X射线图像与其他图像引导系统(如3D回波成像)以及未来的机器人手术系统混合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YingLiang Ma其他文献
CI-452770-2 strongAUTOMATED LEAD DETECTION AND CHEST X-RAY FEATURES SIGNIFICANTLY IMPROVE ABILITY OF MACHINE LEARNING MODELS TO PREDICT RISK OF MAJOR ADVERSE EVENTS RELATED TO TRANSVENOUS LEAD EXTRACTION/strong
CI-452770-2 强大的自动引线检测和胸部 X 光特征显著提高了机器学习模型预测与经静脉引线提取相关的重大不良事件风险的能力。
- DOI:
10.1016/j.hrthm.2023.03.380 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Vishal S. Mehta;YingLiang Ma;Nadeev Wijesuriya;Felicity DeVere;Mark K. Elliott;Steven A. Niederer;Reza Razavi;Christopher A. Rinaldi - 通讯作者:
Christopher A. Rinaldi
A statistical approach to gait recognition and verification by using cyclograms
使用环图进行步态识别和验证的统计方法
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
YingLiang Ma;F. Pollick;M. Turner - 通讯作者:
M. Turner
Simultaneous non-contact mapping fused with CMR derived grey zone to explore the relationship with ventricular tachycardia substrate in ischaemic cardiomyopathy
- DOI:
10.1186/1532-429x-15-s1-p64 - 发表时间:
2013-01-30 - 期刊:
- 影响因子:
- 作者:
Zhong Chen;Jatin Relan;Walther H Schulze;Rashed Karim;Manav Sohal;Anoop Shetty;YingLiang Ma;Nicholas Ayache;Maxime Sermesant;Herve Delingette;Julian Bostock;Reza Razavi;Kawal Rhode;Aldo Rinaldi - 通讯作者:
Aldo Rinaldi
YingLiang Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Three dimensional object reconstruction with hybrid data structure
混合数据结构的三维物体重建
- 批准号:
23K16906 - 财政年份:2023
- 资助金额:
$ 35.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hybrid three-dimensional solitons for applications
混合三维孤子的应用
- 批准号:
403502830 - 财政年份:2018
- 资助金额:
$ 35.03万 - 项目类别:
Priority Programmes
Development of a Stable Meshless Method for Electromagnetic Wave Propagation Analysis in Three-Dimensional Complex Shaped Domains and its Acceleration
三维复杂形状域电磁波传播分析的稳定无网格方法及其加速的发展
- 批准号:
15K00177 - 财政年份:2015
- 资助金额:
$ 35.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of advanced hybrid treatment for titanium alloy produced by three-dimensional printer
三维打印机生产钛合金先进混合处理技术的建立
- 批准号:
15H03892 - 财政年份:2015
- 资助金额:
$ 35.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Enzyme-based Electrodes Using Three-Dimensional CNTs/G Hybrid Films
使用三维 CNT/G 混合薄膜开发酶基电极
- 批准号:
26790011 - 财政年份:2014
- 资助金额:
$ 35.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Construction of optimized three-dimensional nanoarchitectures by nitrogen-doped graphene and application to supercapacitors
氮掺杂石墨烯优化三维纳米结构的构建及其在超级电容器中的应用
- 批准号:
25870057 - 财政年份:2013
- 资助金额:
$ 35.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Artificial three-dimensional biotops with electroactive bacteria for highly efficient microbial fuel cells by use of metal/polymer fiber hybrid structures
具有电活性细菌的人工三维生物群落,通过使用金属/聚合物纤维混合结构实现高效微生物燃料电池
- 批准号:
220918832 - 财政年份:2012
- 资助金额:
$ 35.03万 - 项目类别:
Research Grants
Three-dimensional observation of single polymer chains in polymer hybrid systems
聚合物杂化体系中单聚合物链的三维观察
- 批准号:
23685050 - 财政年份:2011
- 资助金额:
$ 35.03万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Development of a Hybrid Three-Dimensional Culture Method in Regenerative Medicine
再生医学中混合三维培养方法的发展
- 批准号:
23791917 - 财政年份:2011
- 资助金额:
$ 35.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of Diagnostic Technique for Three-Dimensional Internal Flow Phenomena Using EFD/CFD Hybrid Analysis
利用 EFD/CFD 混合分析的三维内流现象诊断技术的开发
- 批准号:
21360085 - 财政年份:2009
- 资助金额:
$ 35.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)