A Pioneering, Near-Zero-Carbon and All-Climate-Adaptive Air Conditioning System Using Atmospheric Latent Heat and Natural Light Energy
利用大气潜热和自然光能的开创性、近零碳和全气候适应性空调系统
基本信息
- 批准号:EP/X029050/1
- 负责人:
- 金额:$ 103.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Air conditioning (AC) is one of the major energy systems applied globally with a market size of around £80 billion per annum. Current AC technologies require large amounts of electrical or thermal energy, accounting for 20% global electricity consumption and resulting in 1,100 mega-tons of carbon emission. The project aims to establish a scientific foundation for a pioneering, near-zero-carbon and all-climate-adaptive AC system. Compared to existing AC technologies (i.e. mechanical vapour compression, absorption, and adsorption types), the new AC system leads to over 80%-90% energy bills saving, and near-zero carbon emission. Unlike existing evaporative cooling AC systems which only suit arid climates, the new AC will be all-climate-adaptive. Novelties of the research lie in: (1) The best performing sorption, diffusion, air-tight and light-absorptive materials will be identified and/or refined; (2) A unique sorption/desorption bed comprising an air-flow-interactive sorption layer and a light-absorptive desorption layer will be developed; (3) A bespoke natural light harvesting configuration to deliver a controlled light radiation into the desorption layer surface; (4) The latest Fractal theory in the first attempt to a multi-medium/sized porous block instead of the traditional single medium/sized porous block; (5) A unique multiple-scale light simulation model, which integrate a non-sequential ray tracing method for simulating the macro-scale light and a finite-difference time-domain method for simulating the light-moisture interaction on the porous desorption surface; (6) A novel 'life-cycle-cooling-cost' oriented optimisation method.The project research programme includes: (1) Screening, refinement, characterisation and selection of the sorption/desorption materials, and determination of the composition/combination methods of the selected materials; (2) Establishment of the theoretical foundation for the light collection/transmission/distribution and light-moisture interaction and conduction of associated computer simulation modelling; (3) Establishment of the theoretical foundation and computer models for moisture adsorption, permeation, diffusion and vaporisation within the porous 'moisture-breathing' bed, and optimisation of the structure of the 'moisture-breathing' bed; (4) Optimisation of the integrated operation between the light-driven 'moisture-breathing' bed and dew point air cooler using the 'life-cycle-cooling-cost' oriented method; and investigation of the AC's building integration approach; and (5) Construction/testing of the AC prototype (including microbial hazard control) and validation/refinement of the integrated AC computer model. The proposed research will be carried out by a cross-university and multi-disciplinary team comprising Prof. Xudong Zhao of UHULL who is the world-class academic specialised in heating, cooling, renewable energy and energy efficiency, Prof. Semali Perera of Bath who is a leading scientist specialised in porous sorption/desorption materials, Prof. Barry Crittenden who is a Fellow of Royal Academy of Engineering specialising in adsorption and membranes, Dr Carmelo Herdes who is specialized in molecular simulations, experiments and characterization of sorption/desorption materials and molecular transport with industrial relevance, Prof. Brad Gilbon of UHULL who is an internationally recognised optical scientist, Prof. Jeanette Rotchell of UHULL who is a leading scientist specialised in environmental biology, Dr. Xiaoli Ma of UHULL who has expertise in renewable energy and dew point cooling, and Dr. Zishang Zhu of UHULL who is specialised in integrating renewable energy system into buildings. The project team will be supported by FIVE UK industrial/governmental organisations.
空调(AC)是全球应用的主要能源系统之一,每年的市场规模约为800亿英镑。目前的AC技术需要大量的电能或热能,占全球电力消耗的20%,并导致1,100兆吨的碳排放。该项目旨在为开创性的、近零碳和全气候适应性空调系统奠定科学基础。与现有的空调技术(即机械蒸汽压缩,吸收和吸附类型)相比,新的空调系统可节省超过80%-90%的能源费用,并接近零碳排放。与现有的蒸发冷却空调系统,只适合干旱气候,新的空调将是所有气候适应。这项研究的创新之处在于:(1)将确定和/或改进性能最好的吸附、扩散、气密和吸光材料;(2)将开发一种独特的吸附/解吸床,包括一个气流相互作用的吸附层和一个吸光解吸层;(3)一种定制的自然光收集配置,以将受控的光辐射输送到解吸层表面;(4)首次尝试用多个介质/尺寸多孔块体代替传统的单个介质/尺寸多孔块体的最新分形理论:(5)独特的多尺度光模拟模型,结合了模拟宏观尺度光的非顺序光线追踪方法和模拟多孔脱附表面光湿相互作用的时域有限差分方法;(6)一种新的“生命周期-冷却-成本”导向的优化方法。该项目的研究计划包括:(1)吸附/解吸材料的筛选、改进、表征和选择,以及确定所选材料的组成/组合方法;(2)建立了光的收集/传输/分配和光的传输的理论基础。(3)建立了多孔吸湿床内水分吸附、渗透、扩散和蒸发的理论基础和计算机模型,优化了多孔吸湿床的结构;(4)以“生命周期冷却成本”为导向的方法,优化光驱动“吸湿”床和露点空气冷却器之间的整合操作;以及研究空调的建筑整合方法;以及(5)建造/测试空调原型(包括微生物危害控制)和验证/改进整合的空调计算机模型。拟议的研究将由一个跨大学和多学科的团队进行,该团队包括UHMWT的赵旭东教授,他是加热,冷却,可再生能源和能源效率方面的世界级学者,Bath的Semali Perera教授,他是多孔吸附/解吸材料方面的领先科学家,巴里克里滕登教授是皇家工程院院士,专门研究吸附和膜,卡梅洛赫尔德斯博士是专门研究分子模拟,吸附/解吸材料和分子传输的实验和表征与工业相关性,国际公认的光学科学家,UHFAN的布拉德吉尔邦教授,UHFAN的珍妮特罗特教授,他是环境生物学领域的领先科学家,在可再生能源和露点冷却方面拥有专业知识的UHV的马晓丽博士,以及专注于将可再生能源系统整合到建筑物中的UHV的朱子尚博士。项目团队将得到五个英国工业/政府组织的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal design of a novel combined heat source system using solar energy and data center waste heat for desiccant regeneration
利用太阳能和数据中心余热进行干燥剂再生的新型组合热源系统的优化设计
- DOI:10.1016/j.applthermaleng.2024.122845
- 发表时间:2024
- 期刊:
- 影响因子:6.4
- 作者:Li G
- 通讯作者:Li G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xudong Zhao其他文献
Finite-time stability and stabilization of fractional order positive switched systems
分数阶正切换系统的有限时间稳定性和稳定性
- DOI:
10.1007/s00034-015-0236-9 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Junfeng Zhang;Xudong Zhao;Yun Chen - 通讯作者:
Yun Chen
Structural Behaviors of a Low-Profile Steel Plate–Reinforced UHPC Deck Panel with Longitudinal Ribs
薄型钢板的结构性能——带纵向肋的增强 UHPC 桥面板
- DOI:
10.1061/(asce)be.1943-5592.0001731 - 发表时间:
2021-08 - 期刊:
- 影响因子:3.6
- 作者:
Yan Wang;Xudong Shao;Xin Zhang;Junhui Cao;Xudong Zhao;Shuwen Deng - 通讯作者:
Shuwen Deng
High-temperature, high-pressure hydrothermal synthesis, crystal structure and luminescent properties, of K3[Gd1?xTbxGe3O8(OH)2] (x= 0, 0.3, 0.1, 1)
K3[Gd1ï⁄xTbxGe3O8(OH)2] (x= 0, 0.3, 0.1, 1)的高温高压水热合成、晶体结构及发光性能
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.9
- 作者:
Min Yang;Ying Wang;Xudong Zhao;Xiaoyang Liu - 通讯作者:
Xiaoyang Liu
Effect of anhydrite on the early hydration performance of rapid setting and hardening belite sulfoaluminate cement
硬石膏对快凝硬化贝利特硫铝酸盐水泥早期水化性能的影响
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mingzhang Lan;Binfeng Xiang;Jianfeng Wang;Xudong Zhao;Xiaoying Wang - 通讯作者:
Xiaoying Wang
Research of Reverse Engineering on Dimensional Accuracy of Parts in Digital Casting Process
数字化铸造零件尺寸精度逆向工程研究
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yuanfei Zhang;Xudong Zhao;Ke Yang;Kaihua Xue;Pingkun Yao;Shan Yao - 通讯作者:
Shan Yao
Xudong Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xudong Zhao', 18)}}的其他基金
Newton Fund: A High Efficiency, Low Cost and Building Integratable Solar Photovoltaic/Thermal System for Space Heating, Hot Water and Power Supply
牛顿基金:高效、低成本、建筑一体化太阳能光伏/热系统,用于空间供暖、热水和供电
- 批准号:
EP/R004684/1 - 财政年份:2017
- 资助金额:
$ 103.76万 - 项目类别:
Research Grant
Key Technologies for Enhancing Energy Efficiency of the Dew Point Air Cooler and its Manufacturing
露点空冷器节能关键技术及其制造
- 批准号:
EP/M507830/1 - 财政年份:2015
- 资助金额:
$ 103.76万 - 项目类别:
Research Grant
相似国自然基金
CRISPR-Cas精准识别协同NEAR指数信号放大一体化生物传感体系构建用于胰腺癌多重基因突变检测方法研究
- 批准号:32371521
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
可编程CRISPR/Cas体系诱导NEAR多重扩增结合上转换荧光纳米探针用于病原体高灵敏可视化检测方法研究
- 批准号:32001786
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于NEAR放大及发射光叠加信号分析的高灵敏可视化双食源性病毒检测方法研究
- 批准号:31701683
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
赌博游戏中near-miss 效应发生的认知神经机制及其病理研究
- 批准号:31400908
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Near完美非线性函数及有关课题研究
- 批准号:11226282
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
SBIR Phase I: Micro-Electromechanical Systems (MEMS)-Based Near-Zero Power Infrared Sensors for Proximity Detection
SBIR 第一阶段:基于微机电系统 (MEMS) 的近零功耗红外传感器,用于接近检测
- 批准号:
2304549 - 财政年份:2024
- 资助金额:
$ 103.76万 - 项目类别:
Standard Grant
A Pioneering, Near-Zero-Carbon and All-Climate-Adaptive Air Conditioning System Using Atmospheric Latent Heat and Natural Light Energy
利用大气潜热和自然光能的开创性、近零碳和全气候适应性空调系统
- 批准号:
EP/X028984/1 - 财政年份:2023
- 资助金额:
$ 103.76万 - 项目类别:
Research Grant
Innovating near-zero-waste 3D woven apparel components towards whole garment manufacturing
创新近零浪费的 3D 梭织服装组件,迈向整体服装制造
- 批准号:
10064069 - 财政年份:2023
- 资助金额:
$ 103.76万 - 项目类别:
Collaborative R&D
Achieving a tunable hybrid plasmonic-semiconductor laser incorporating epsilon-near-zero materials
实现结合ε近零材料的可调谐混合等离子体半导体激光器
- 批准号:
569945-2022 - 财政年份:2022
- 资助金额:
$ 103.76万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Impact of COVID-19 on project on non-destructive wireless monitoring of food quality using near zero-cost printed electrical gas sensors
COVID-19 对使用近零成本印刷电子气体传感器无损无线监测食品质量项目的影响
- 批准号:
74587 - 财政年份:2020
- 资助金额:
$ 103.76万 - 项目类别:
Feasibility Studies
STTR Phase I: Algorithmic Mid-Infrared Spectroscope Utilizing Narrow-Band, Epsilon-Near-Zero Thermal Emitters
STTR 第一阶段:利用窄带、Epsilon 近零热发射器的算法中红外光谱仪
- 批准号:
2014798 - 财政年份:2020
- 资助金额:
$ 103.76万 - 项目类别:
Standard Grant
CAREER: Epsilon-Near-Zero Conducting Oxide Metasurface Perfect Absorbers, Color Filters, and Beam Steering Devices with Gate-tunability
职业:Epsilon 近零导电氧化物超表面完美吸收器、滤色片和具有栅极可调性的光束转向器件
- 批准号:
2113010 - 财政年份:2020
- 资助金额:
$ 103.76万 - 项目类别:
Standard Grant
Dynamic wavefront engineering via index-near-zero nonlinearities
通过折射率近零非线性进行动态波前工程
- 批准号:
2517876 - 财政年份:2020
- 资助金额:
$ 103.76万 - 项目类别:
Studentship
Nonlinear Optics using Epsilon Near Zero Materials
使用 Epsilon 近零材料的非线性光学
- 批准号:
2179928 - 财政年份:2019
- 资助金额:
$ 103.76万 - 项目类别:
Studentship
Non-destructive wireless monitoring of food quality using near zero-cost printed electrical gas sensors
使用近乎零成本的印刷电子气体传感器对食品质量进行无损无线监测
- 批准号:
33486 - 财政年份:2019
- 资助金额:
$ 103.76万 - 项目类别:
Collaborative R&D