CONcISE: COmputatioNal Imaging as a training Network for Smart biomedical dEvices
简明:计算成像作为智能生物医学设备的培训网络
基本信息
- 批准号:EP/X030733/1
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our vision is to develop novel, unconventional techniques for multi-dimensional biomedical optical imaging for the detection and mapping of absorption, scattering, and fluorescence, in biological tissues using visible and near-infrared light. The possibility of detecting other dimensions like time and wavelength, together with space, dramatically improves the imaging and diagnostic power of biomedical devices. So far, this capability is strongly hampered by the fact that most of the biomedical instrumentation works trying to maximize the number of measurements (pixel, raster scans, ...) regardless of the information content, thus leading to a huge amount of data to manage, transfer and analyze, with consequent bottleneck and gap between measurement and result. CONcISE will overcome these limitations thanks to an outstanding research and training programme based on the vision that (i) a system as a whole includes both hardware and software integrated and working together, (ii) acquisition and detection are piloted by information content derived by the sample under an adaptive, data-driven framework. Under this approach, ESRSs will be capable ofleading and boosting the biomedical imaging industry towards the development of a new generation of devices, with a strong impact in the sector and in general healthcare. The consortium, balanced among EU experts with computational, experimental and industrial competences, will provide ESRs with a unique, advanced, multi-disciplinary training covering all the aspects of the biomedical imaging science: modelling, design, development, data analysis, validation and translation to the application.
我们的愿景是开发新颖的,非传统的多维生物医学光学成像技术,用于使用可见光和近红外光在生物组织中检测和绘制吸收,散射和荧光。探测时间、波长和空间等其他维度的可能性极大地提高了生物医学设备的成像和诊断能力。到目前为止,这种能力受到了大多数生物医学仪器试图最大化测量数量(像素,光栅扫描等)的事实的严重阻碍。无论信息内容如何,都会导致大量数据需要管理、传输和分析,从而导致测量与结果之间出现瓶颈和差距。CONcISE将克服这些限制,这要归功于一个出色的研究和培训方案,该方案基于以下愿景:㈠整个系统包括硬件和软件的集成和协同工作,㈡采集和探测由样本在一个自适应的数据驱动框架下得出的信息内容引导。在这种方法下,ESRS将能够引领和推动生物医学成像行业朝着新一代设备的发展,对该行业和一般医疗保健产生重大影响。该联盟由具有计算,实验和工业能力的欧盟专家组成,将为ESR提供独特,先进,多学科的培训,涵盖生物医学成像科学的各个方面:建模,设计,开发,数据分析,验证和应用翻译。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A computational framework for investigating the feasibility of focusing light in biological tissue via photoacoustic wavefront shaping
研究通过光声波前整形在生物组织中聚焦光的可行性的计算框架
- DOI:10.1117/12.2656075
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bewick J
- 通讯作者:Bewick J
Breast lesion classification based on absorption and composition parameters: a look at SOLUS first outcomes
基于吸收和成分参数的乳腺病变分类:SOLUS 的首要结果
- DOI:10.1117/12.2648945
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Maffeis G
- 通讯作者:Maffeis G
Initial examples of the SOLUS multimodal potential
SOLUS 多模式潜力的初步示例
- DOI:10.1117/12.2670430
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Maffeis G
- 通讯作者:Maffeis G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Arridge其他文献
Investigating Intensity Normalisation for PET Reconstruction with Supervised Deep Learning
利用监督深度学习研究 PET 重建的强度归一化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
I. Singh;Alexander Denker;Bangti Jin;Kris Thielemans;Simon Arridge - 通讯作者:
Simon Arridge
Deep Image Prior PET Reconstruction using a SIRF-Based Objective
使用基于 SIRF 的物镜进行深度图像先验 PET 重建
- DOI:
10.1109/nss/mic44845.2022.10399292 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
I. Singh;Riccardo Barbano;R. Twyman;Ž. Kereta;Bangti Jin;Simon Arridge;Kris Thielemans - 通讯作者:
Kris Thielemans
Rapid workflow of mMR PET list-mode data processing using CUDA
- DOI:
10.1186/2197-7364-2-s1-a42 - 发表时间:
2015-05-18 - 期刊:
- 影响因子:3.200
- 作者:
Pawel Markiewicz;Kris Thielemans;David Atkinson;Simon Arridge;Brian Hutton;Sebastien Ourselin - 通讯作者:
Sebastien Ourselin
Improved parameter-estimation with combined PET-MRI kinetic modelling
- DOI:
10.1186/2197-7364-2-s1-a25 - 发表时间:
2015-05-18 - 期刊:
- 影响因子:3.200
- 作者:
Kjell Erlandsson;Maria Liljeroth;David Atkinson;Simon Arridge;Sebastien Ourselin;Brian Hutton - 通讯作者:
Brian Hutton
Data-driven approaches for electrical impedance tomography image segmentation from partial boundary data
根据部分边界数据进行电阻抗断层扫描图像分割的数据驱动方法
- DOI:
10.3934/ammc.2024005 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alexander Denker;Ž. Kereta;I. Singh;Tom Freudenberg;T. Kluth;Peter Maass;Simon Arridge - 通讯作者:
Simon Arridge
Simon Arridge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Arridge', 18)}}的其他基金
Tomographic imaging of flow and chromophore concentrations in biological tissue
生物组织中血流和发色团浓度的断层扫描成像
- 批准号:
EP/N032055/1 - 财政年份:2016
- 资助金额:
$ 33.8万 - 项目类别:
Research Grant
Dynamic Peri-operative Cerenkov Luminescence Imaging for Robotic Assisted Surgery (EDCLIRS)
用于机器人辅助手术的动态围手术期切伦科夫发光成像 (EDCLIRS)
- 批准号:
EP/N022750/1 - 财政年份:2016
- 资助金额:
$ 33.8万 - 项目类别:
Research Grant
Dynamic High Resolution Photoacoustic Tomography System
动态高分辨率光声断层扫描系统
- 批准号:
EP/K009745/1 - 财政年份:2013
- 资助金额:
$ 33.8万 - 项目类别:
Research Grant
Parameter and Structure Indentification in Optical Tomography
光学断层扫描中的参数和结构识别
- 批准号:
EP/E034950/1 - 财政年份:2007
- 资助金额:
$ 33.8万 - 项目类别:
Research Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Standard Grant
CAREER: Neural Computational Imaging - A Path Towards Seeing Through Scattering
职业:神经计算成像——透视散射的途径
- 批准号:
2339616 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Continuing Grant
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2318758 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Standard Grant
CAREER: Generative Physical Modeling for Computational Imaging Systems
职业:计算成像系统的生成物理建模
- 批准号:
2239687 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Continuing Grant
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2348046 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Standard Grant
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Ultrafast analysis of atherosclerotic plaque stress using in vivo imaging, computational modelling and machine learning for more accurate coronary art
使用体内成像、计算建模和机器学习对动脉粥样硬化斑块应力进行超快速分析,以实现更准确的冠状动脉艺术
- 批准号:
2868450 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Studentship
A Magnetic Resonance Imaging Based Computational Analysis of Plaque Morphology and Hemodynamics in Patients with High Grade Asymptomatic Carotid Artery Stenosis
基于磁共振成像的高度无症状颈动脉狭窄患者斑块形态和血流动力学的计算分析
- 批准号:
10677431 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
New proximal algorithms for computational imaging: From optimisation theory to enhanced deep learning
计算成像的新近端算法:从优化理论到增强型深度学习
- 批准号:
EP/X028860/1 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Research Grant