AI-enhanced integrated surface metrology
人工智能增强的集成表面测量
基本信息
- 批准号:EP/X031675/1
- 负责人:
- 金额:$ 272.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The world is experiencing the first stages of a digital industrial revolution: Industry 4.0. However, current digital quality control solutions are not delivering in terms of speed, capability, efficiency or futureproofing. An essential part of manufacturing is quality control, which is achieved through measurement. One of the most important measurands for quality control is the surface of the part; both shape and fine-scale topography are critical when considering tolerances, assembly and ultimately functionality. But current integrated surface measurement technologies are too slow and have little flexibility under variable processing conditions. Measurements are taken after manufacture or by slowing down the process - compromising the all-important throughput. To take surface measurement from lab to application can require speed increases of several orders of magnitude, and this is often beyond the capability of current technology. However, I have demonstrated that these challenges can be tackled using an emerging approach: information-rich metrology - the use of a priori information to enhance the measurement process by optimising what needs to be measured, so increasing the spatial bandwidth but decreasing the measurement time. Such optimisation generally requires complex physics models of the measurement; this is where a recent revolution comes to the rescue: machine learning, which I will use to combine newly developed physics models with a priori information to produce enhanced measurement systems that are an integral, real-time, and constantly learning part of the manufacturing process. This is not a proposal to make incremental developments; rather I seek to transform the field by combining the advances of three fields (basic physics, machine learning and metrology) - a binding energy approach that will be more than the sum of the parts. The proposed project will revolutionise digital quality, making measurement a seamless, yet constantly evolving part of manufacturing.
世界正在经历一场数字工业革命的第一阶段:工业4.0。然而,当前的数字质量控制解决方案在速度、能力、效率或面向未来方面并未交付。制造的一个重要部分是质量控制,这是通过测量来实现的。质量控制的最重要的衡量标准之一是零件的表面;在考虑公差、装配和最终功能时,形状和精细的表面都是至关重要的。但目前的集成表面测量技术速度太慢,在不同的加工条件下缺乏灵活性。测量是在制造后进行的,或者通过放慢工艺进行测量--这会影响至关重要的吞吐量。将表面测量从实验室应用到应用可能需要几个数量级的速度提升,而这往往超出了当前技术的能力。然而,我已经证明,这些挑战可以使用一种新兴的方法来解决:信息丰富的计量学--利用先验信息优化需要测量的内容,从而增强测量过程,从而增加空间带宽,但缩短测量时间。这种优化通常需要复杂的测量物理模型;这就是最近的一场革命的用武之地:机器学习,我将利用机器学习将新开发的物理模型与先验信息结合起来,产生增强的测量系统,它是制造过程中不可或缺的、实时的、不断学习的一部分。这不是一个循序渐进的发展建议;相反,我寻求通过结合三个领域(基础物理、机器学习和计量学)的进步来改变该领域--一种约束能量的方法,它将超过各个部分的总和。拟议中的项目将彻底改变数字质量,使测量成为制造业中无缝但不断发展的一部分。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving the localisation of features for the calibration of cameras using EfficientNets.
使用 EfficientNets 改进相机校准的特征定位。
- DOI:10.1364/oe.478934
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Eastwood J
- 通讯作者:Eastwood J
New Standard for Metal Powder Bed Fusion Surface Texture Measurement and Characterisation
金属粉末床熔融表面纹理测量和表征的新标准
- DOI:10.3390/metrology3020013
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Thompson A
- 通讯作者:Thompson A
Optimisation of Imaging Confocal Microscopy for Topography Measurements of Metal Additive Surfaces
用于金属增材表面形貌测量的成像共焦显微镜的优化
- DOI:10.3390/metrology3020011
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Newton L
- 通讯作者:Newton L
Evaluating parametric uncertainty using non-linear regression in fringe projection
- DOI:10.1016/j.optlaseng.2022.107377
- 发表时间:2023-03
- 期刊:
- 影响因子:4.6
- 作者:George Gayton;Mohammed A. Isa;R. Leach
- 通讯作者:George Gayton;Mohammed A. Isa;R. Leach
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Leach其他文献
Extracting focus variation data from coherence scanning interferometric measurements
从相干扫描干涉测量中提取焦点变化数据
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jiayu Liu;Helia Hooshmand;S. Piano;Richard Leach;Jeremy Coupland;Mingjun Ren;Limin Zhu;Rong Su - 通讯作者:
Rong Su
Placental Dysregulation May Underlie Depression During Pregnancy
- DOI:
10.1016/j.biopsych.2023.02.120 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Eric Achtyes;Sarah Keaton;Richard Leach;Lena Brundin - 通讯作者:
Lena Brundin
Comparison of rigorous scattering models to accurately replicate the behaviour of scattered electromagnetic waves in optical surface metrology
- DOI:
10.1016/j.jcp.2024.113519 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Helia Hooshmand;Tobias Pahl;Poul-Erik Hansen;Liwei Fu;Alexander Birk;Mirza Karamehmedović;Peter Lehmann;Stephan Reichelt;Richard Leach;Samanta Piano - 通讯作者:
Samanta Piano
Framework for uncertainty evaluation in optical surface topography measurement using a virtual instrument
基于虚拟仪器的光学表面形貌测量中不确定性评估的框架
- DOI:
10.1016/j.measurement.2025.117604 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.600
- 作者:
Helia Hooshmand;Athanasios Pappas;Mohammed A Isa;Rong Su;Han Haitjema;Samanta Piano;Richard Leach - 通讯作者:
Richard Leach
Two-dimensional spectral signal model for chromatic confocal microscopy
- DOI:
https://doi.org/10.1364/OE.418924 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Cheng Chen;Richard Leach;Jian Wang;Xiaojun Liu;Xiangqian Jiang;Wenlong Lu - 通讯作者:
Wenlong Lu
Richard Leach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Leach', 18)}}的其他基金
Revisiting optical scattering with machine learning (SPARKLE)
通过机器学习重新审视光学散射 (SPARKLE)
- 批准号:
EP/R028826/1 - 财政年份:2018
- 资助金额:
$ 272.78万 - 项目类别:
Research Grant
Metrology for precision and additive manufacturing
精密和增材制造计量
- 批准号:
EP/M008983/1 - 财政年份:2015
- 资助金额:
$ 272.78万 - 项目类别:
Fellowship
相似国自然基金
噬菌体靶向肠道粪肠球菌提高帕金森病左旋多巴疗效的机制研究
- 批准号:82371251
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Administrative Core: An Integrated Multi PI And Multi Site Management Plan For Enhanced Echinobase
管理核心:增强型 Echinobase 的集成多 PI 和多站点管理计划
- 批准号:
10715579 - 财政年份:2023
- 资助金额:
$ 272.78万 - 项目类别:
Integrated enhanced natural attenuation approach for risk-based closure of a toluene contaminated site
基于风险的甲苯污染场地关闭的综合强化自然衰减方法
- 批准号:
556382-2020 - 财政年份:2022
- 资助金额:
$ 272.78万 - 项目类别:
Alliance Grants
Dynamic Fracture Characterization and Integrated Optimization of Enhanced Oil Recovery Performance in Tight Formations under Uncertainty
不确定性条件下致密地层动态裂缝表征及提高采收率综合优化
- 批准号:
RGPIN-2019-07150 - 财政年份:2022
- 资助金额:
$ 272.78万 - 项目类别:
Discovery Grants Program - Individual
Integrated photonics for enhanced computing
用于增强计算的集成光子学
- 批准号:
532475-2019 - 财政年份:2022
- 资助金额:
$ 272.78万 - 项目类别:
Postgraduate Scholarships - Doctoral
Technology-Enhanced Asthma Care in Children at Clinic and Home (TEACCCH) Study
技术增强的儿童哮喘护理诊所和家庭 (TEACCCH) 研究
- 批准号:
10369968 - 财政年份:2022
- 资助金额:
$ 272.78万 - 项目类别:
An integrated nano-bioengineered chip for enhanced molecular evolution
用于增强分子进化的集成纳米生物工程芯片
- 批准号:
DP220100960 - 财政年份:2022
- 资助金额:
$ 272.78万 - 项目类别:
Discovery Projects
ERI: Harnessing Probabilistic Deep Learning Method Integrated with Tailored Features for Enhanced Real-Time Machinery Fault Diagnosis and Prognosis
ERI:利用概率深度学习方法与定制特征相结合,增强实时机械故障诊断和预测
- 批准号:
2138522 - 财政年份:2022
- 资助金额:
$ 272.78万 - 项目类别:
Standard Grant
Technology-Enhanced Asthma Care in Children at Clinic and Home (TEACCCH) Study
技术增强的儿童哮喘护理诊所和家庭 (TEACCCH) 研究
- 批准号:
10580783 - 财政年份:2022
- 资助金额:
$ 272.78万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10448971 - 财政年份:2022
- 资助金额:
$ 272.78万 - 项目类别:
MICCO - Mobile Integrated Care for Childhood Obesity: A technology-enhanced comprehensive approach to integrating obesity care in rural communities
MICCO - 儿童肥胖移动综合护理:一种技术增强的综合方法,将肥胖护理纳入农村社区
- 批准号:
10580770 - 财政年份:2022
- 资助金额:
$ 272.78万 - 项目类别: