Bridging Models at Different Scales To Design New Generation Fuel Cells for Electrified Mobility (BLESSED)

桥接不同规模的模型来设计新一代电动汽车燃料电池 (BLESSED)

基本信息

  • 批准号:
    EP/X032264/1
  • 负责人:
  • 金额:
    $ 50.7万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

To achieve the goals of the European Green Deal on climate neutrality, a 90% reduction in transport emissions is needed by 2050. The automotive industry urgently needs to accelerate the introduction of alternative powertrains for electrified vehicles. Hydrogenpowered Proton Exchange Membrane Fuel Cells (PEMFCs) are carbon-free power devices that meet these goals in both mobile and stationary applications. BLESSED aims at revolutionising the design process of next generation PEMFCs, to improve efficiency, durability and affordability for widespread use, with direct implications in clean energy and sustainable industry/mobility. BLESSED will train 15 Doctoral Candidates (DCs) to solve Multi-Scale (MS) engineering challenges, from the electrons up to the device level, through a unique combination of multi-disciplinary computational methods with Machine Learning (ML) to bridge each length scale's highly accurate model to adjacent scales. Then, a top-down length scale approach will be followed to optimise PEMFC and its components. To this end, the 15 DCs will synergistically develop a unique MS computational framework for the all-scale PEMFC analysis/design, assisted by ML tools. This will allow the simultaneous consideration of complex physico-chemical phenomena occurring at all length scales, such as catalytically-assisted chemical reactions, contact of rough surfaces, mechanical/chemicaldegradation of membranes, fluid flows in porous media etc., at affordable computational cost. The proposed ID-network brings together world-class academic expertise on numerical modelling and simulation in electrochemistry, reacting flows, fluid mechanics, materials, optimisation methods and ML, with industrial developers. With a strong focus on industrial applications, BLESSED will develop methodologies and tools to exceed state-of-the-art in PEMFCs by minimising the Platinum group metal content and corrosion while maximising mass transport and electrical conductivity.
为了实现欧洲绿色协议关于气候中立的目标,到2050年需要减少90%的交通排放。汽车行业迫切需要加快为电动汽车引入替代动力系统。氢动力质子交换膜燃料电池(PEMFC)是无碳动力装置,满足这些目标在移动的和固定的应用。BLESSED旨在彻底改变下一代PEMFC的设计过程,以提高效率,耐用性和广泛使用的可负担性,直接影响清洁能源和可持续工业/移动性。BLESSED将培训15名博士候选人(DC),以解决多尺度(MS)工程挑战,从电子到器件级,通过多学科计算方法与机器学习(ML)的独特组合,将每个长度尺度的高精度模型与相邻尺度连接起来。然后,将遵循自上而下的长度尺度方法来优化PEMFC及其组件。为此,15个DC将协同开发一个独特的MS计算框架,用于所有规模的PEMFC分析/设计,并辅以ML工具。这将允许同时考虑在所有长度尺度上发生的复杂物理化学现象,例如催化辅助化学反应、粗糙表面的接触、膜的机械/化学降解、多孔介质中的流体流动等,以可承受的计算成本。拟议的ID网络将电化学、反应流、流体力学、材料、优化方法和ML的数值建模和模拟方面的世界级学术专业知识与工业开发人员汇集在一起。BLESSED专注于工业应用,将开发方法和工具,通过最大限度地减少铂族金属含量和腐蚀,同时最大限度地提高质量传输和电导率,超越PEMFC的最新技术水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rune Lindstedt其他文献

Rune Lindstedt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploration of factors contributing to disease severity using COVID-19 mouse models with different severity.
使用不同严重程度的 COVID-19 小鼠模型探索导致疾病严重程度的因素。
  • 批准号:
    22K07038
  • 财政年份:
    2022
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Determining the role of reward circuits behind different paternal care behaviors and the motivation to care for offspring by comparing two animal models
通过比较两种动物模型来确定不同父亲照顾行为背后的奖励回路的作用以及照顾后代的动机
  • 批准号:
    10454008
  • 财政年份:
    2022
  • 资助金额:
    $ 50.7万
  • 项目类别:
Determining the role of reward circuits behind different paternal care behaviors and the motivation to care for offspring by comparing two animal models
通过比较两种动物模型来确定不同父亲照顾行为背后的奖励回路的作用以及照顾后代的动机
  • 批准号:
    10577852
  • 财政年份:
    2022
  • 资助金额:
    $ 50.7万
  • 项目类别:
Understanding Heterogeneity and Correlation of Emergency Departments Across Different Provinces by Multilevel Regression Models
通过多级回归模型了解不同省份急诊科的异质性和相关性
  • 批准号:
    486354
  • 财政年份:
    2022
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Studentship Programs
Learning about Viral Epidemics through Engagement with Different Types of Models
通过与不同类型的模型接触来了解病毒流行病
  • 批准号:
    2101083
  • 财政年份:
    2021
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Continuing Grant
Development of fast machine learning methods based on combinations of different computational models
基于不同计算模型组合的快速机器学习方法的开发
  • 批准号:
    20K11882
  • 财政年份:
    2020
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Scoping Review of Literature on Different Models of Allocating Funds to Facilitate Integrated Care
对促进综合护理的不同资金分配模式的文献进行范围审查
  • 批准号:
    383802
  • 财政年份:
    2018
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Operating Grants
Integrating Mathematical Models with Biological Experiments to Understand Abnormal Growth of Cells Under the Influence of Different Microenvironments
数学模型与生物学实验相结合,了解细胞在不同微环境影响下的异常生长
  • 批准号:
    489409-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Animal models to inform FDA tobacco regulation: Assessing the relative abuse liability of different classes of tobacco products
为 FDA 烟草监管提供信息的动物模型:评估不同类别烟草产品的相对滥用倾向
  • 批准号:
    9770827
  • 财政年份:
    2018
  • 资助金额:
    $ 50.7万
  • 项目类别:
Monte Carlo simulations for evaluating the performance of modern missing data techniques when estimating structural equation models with latent variables. A systematic analysis of different types of multiple imputation.
蒙特卡洛模拟用于评估现代缺失数据技术在估计具有潜在变量的结构方程模型时的性能。
  • 批准号:
    370960346
  • 财政年份:
    2017
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了