Chemistry INformEd MAchine learning in emulsion polymerization processes and products

乳液聚合过程和产品中的化学信息机器学习

基本信息

  • 批准号:
    EP/X034763/1
  • 负责人:
  • 金额:
    $ 33.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Machine learning (ML) systems continue to revolutionize many aspects of daily life, but despite their immense potential have yet to impact significantly in polymer science. One major issue that is hindering the more widespread use of machine learning in polymer science, and many other physical sciences, liesin the challenges in amassing sufficient data to efficiently train machine learning models. This in itself is not necessarily a problem, and is an issue frequently encountered in the machine learning field, but can only be resolved by a thorough understanding of the science behind the problem of interest. CINEMA aims to providing a training platform that will allow the next generation of polymer scientists to take polymer science into the 21st century through incorporating the fundamental knowledge gained over many years of research into the training of machine learning systems. Such a knowledge-driven machine learning approach puts the scientific issues of CINEMA at the forefront of the use of machine learning in fundamental scientific problems, and also provides the perfect training platform for the next generation of scientists, for whom the use of AI will be an invaluable tool.
机器学习(ML)系统继续革新日常生活的许多方面,但尽管它们具有巨大的潜力,但尚未对聚合物科学产生重大影响。阻碍机器学习在聚合物科学和许多其他物理科学中更广泛使用的一个主要问题在于积累足够数据以有效训练机器学习模型的挑战。这本身并不一定是一个问题,也是机器学习领域经常遇到的问题,但只有深入了解问题背后的科学才能解决。CINEMA旨在提供一个培训平台,使下一代聚合物科学家能够通过将多年研究获得的基础知识融入机器学习系统的培训中,将聚合物科学带入世纪。这种知识驱动的机器学习方法将CINEMA的科学问题置于机器学习在基础科学问题中的最前沿,并为下一代科学家提供了完美的培训平台,对他们来说,人工智能的使用将是一个宝贵的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexei Lapkin其他文献

Correction to: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm
  • DOI:
    10.1007/s10898-018-0629-y
  • 发表时间:
    2018-03-09
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Eric Bradford;Artur M. Schweidtmann;Alexei Lapkin
  • 通讯作者:
    Alexei Lapkin
<em>In situ</em> synthesis and catalytic activity in CO oxidation of metal nanoparticles supported on porous nanocrystalline silicon
  • DOI:
    10.1016/j.jcat.2010.02.002
  • 发表时间:
    2010-04-12
  • 期刊:
  • 影响因子:
  • 作者:
    Sergej Polisski;Bernhard Goller;Karen Wilson;Dmitry Kovalev;Vladimir Zaikowskii;Alexei Lapkin
  • 通讯作者:
    Alexei Lapkin

Alexei Lapkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexei Lapkin', 18)}}的其他基金

Combining Chemical Robotics and Statistical Methods to Discover Complex Functional Products
结合化学机器人技术和统计方法来发现复杂的功能产品
  • 批准号:
    EP/R009902/1
  • 财政年份:
    2018
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
Understanding and Controlling Nanoscale Molecular Metal Oxides for Responsive Reaction Systems
了解和控制响应反应系统的纳米级分子金属氧化物
  • 批准号:
    EP/F023456/2
  • 财政年份:
    2010
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
Engineering the convergence of chemistry and biology: resolving the incompatibility of bio- and chemical catalysis
工程化学与生物学的融合:解决生物催化和化学催化的不相容性
  • 批准号:
    EP/E010571/2
  • 财政年份:
    2009
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
Generation of singlet oxygen mediated by silicon nanoassemblies for novel organic catalytic reactions
由硅纳米组件介导的单线态氧的产生用于新型有机催化反应
  • 批准号:
    EP/E012183/2
  • 财政年份:
    2009
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
Understanding and Controlling Nanoscale Molecular Metal Oxides for Responsive Reaction Systems
了解和控制响应反应系统的纳米级分子金属氧化物
  • 批准号:
    EP/F023456/1
  • 财政年份:
    2008
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
Generation of singlet oxygen mediated by silicon nanoassemblies for novel organic catalytic reactions
由硅纳米组件介导的单线态氧的产生用于新型有机催化反应
  • 批准号:
    EP/E012183/1
  • 财政年份:
    2007
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
Adaptive processing of natural feedstocks
天然原料的适应性加工
  • 批准号:
    EP/F016182/1
  • 财政年份:
    2007
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
Engineering the convergence of chemistry and biology: resolving the incompatibility of bio- and chemical catalysis
工程化学与生物学的融合:解决生物催化和化学催化的不相容性
  • 批准号:
    EP/E010571/1
  • 财政年份:
    2006
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant
Feasibility of hydrogen storage and sensing on novel TiO2 nanotube materials
新型TiO2纳米管材料储氢和传感的可行性
  • 批准号:
    EP/D039673/1
  • 财政年份:
    2006
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Research Grant

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Continuing Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
  • 批准号:
    2236947
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Standard Grant
Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
  • 批准号:
    23K13326
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: North American Monsoon Prediction Using Causality Informed Machine Learning
EAGER:使用因果关系信息机器学习来预测北美季风
  • 批准号:
    2313689
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Standard Grant
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
  • 批准号:
    10600819
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
Physics-informed machine learning methods for multiphase flows
基于物理的多相流机器学习方法
  • 批准号:
    2882917
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Studentship
Physics-informed and physics-constrained machine learning for next generation imaging
用于下一代成像的物理知情和物理约束的机器学习
  • 批准号:
    2898384
  • 财政年份:
    2023
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Studentship
CAREER: CAS- Climate: Climate Adaptation Pathways in Eco-Hydrologic Systems with Physics-Informed Machine Learning
职业:CAS-气候:基于物理的机器学习在生态水文系统中的气候适应途径
  • 批准号:
    2144332
  • 财政年份:
    2022
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Continuing Grant
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 33.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了