Coffee rings and ridges: predicting late-time deposit profiles in evaporating droplets

咖啡环和咖啡脊:预测蒸发液滴中的后期沉积剖面

基本信息

  • 批准号:
    EP/X035646/1
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    已结题

项目摘要

When a spilled droplet of coffee dries on a tabletop, it is well known that it leaves behind a stain that is darker towards its edges. This is called the 'coffee-ring' effect and is not unique to coffee, but occurs in a multitude of situations involving an evaporating liquid droplet that contains an inert (non-evaporating) solute. The edge of the droplet - called the contact line - becomes pinned on the solid surface so that, as the liquid dries, to replace fluid lost at the contact line, a flow develops in the droplet that takes liquid from the droplet interior to the contact line. This flow carries solute along with it. The advection of the solute is then counteracted by diffusion near the contact line, which drives the development of the coffee ring. The coffee-ring effect can be exploited in many industrial problems, for example in printing microscale circuits or colloidal patterning, or aligning DNA using the outward flow. Engineers may also seek to counter the effect in applications where a uniform deposit may be desired, such as in spray coating or inkjet printing.The coffee-ring effect has therefore seen a significant amount of attention since its discovery. However, a less well-known phenomenon is the possibility of enhanced internal deposits developing as part of the same process. At later stages of drying, the droplet shape can alter significantly so that the liquid surface begins to dip in the centre, getting very close to the solid surface. This may lead to solute becoming trapped between the liquid surface and the solid. Moreover, the change in the droplet shape alters the flow pattern, further increasing the movement of solute to the droplet interior. These internal deposits are called 'coffee ridges' or 'coffee eyes' and have been seen previously in experiments involving droplets containing a polymer. However, coffee-ridge formation is comparatively poorly understood compared to its ring counterpart, despite its key role in the final residual patterns. In fact, in several applications, coffee ridges may be more problematic than coffee rings, for example in the printing of QLED screens. A better understanding of the physics behind coffee ridges alongside a means to accurately predict and understand their formation is therefore an important mathematical and engineering challenge.This project seeks to address this challenge by deriving a mathematical model for coffee-ridge formation. I will begin by considering a problem where a droplet evaporates in a shallow well. This configuration has two advantages. First, it will inhibit coffee-ring formation, so as to allow me to focus on the flow dynamics in the droplet interior and, hence, the coffee ridge. Second, such a configuration is used in the printing of OLED/QLED screens, so the model has direct industrial relevance. I will systematically derive a reduced model by exploiting the shallowness of the well and the dominant effect of surface tension in the droplet. I will then explore the evolution of the solute distribution within the droplet using a hybrid approach that combines matched asymptotic analysis with numerical simulations. Of particular interest are key characteristics of the evolving deposit such as the size and location of the coffee ridge. These results will then be compared to existing experimental data in the literature. I will then build upon these results to consider the more common configuration in which a droplet evaporates on a flat surface. By carefully analysing the concurrent formation of the coffee ring and the coffee ridge, I will discover how the flow patterns evolve in time and investigate the interplay between the two features as they grow. The model will be used to inform future applications of droplet drying in industry and engineering.
当溢出的咖啡滴在桌面上干燥时,众所周知,它会留下一个朝向其边缘的颜色较深的污渍。这被称为“咖啡环”效应,并不是咖啡独有的,而是发生在涉及含有惰性(非蒸发)溶质的蒸发液滴的多种情况下。液滴的边缘(称为接触线)被固定在固体表面上,使得随着液体干燥,为了替换在接触线处损失的流体,在液滴中形成流动,该流动将液体从液滴内部带到接触线。这种流动携带着沿着的溶质,溶质的平流随后被接触线附近的扩散所抵消,从而驱动咖啡环的发展。咖啡环效应可以应用于许多工业问题,例如印刷微型电路或胶体图案化,或使用向外流动对齐DNA。工程师们也可以在需要均匀存款的应用中寻求抵消这种效应,例如在喷涂或喷墨印刷中。然而,一个不太为人所知的现象是,作为同一过程的一部分,内部沉积物可能会增加。在干燥的后期阶段,液滴形状可能会发生显著变化,使得液体表面开始浸入中心,非常接近固体表面。这可能导致溶质被困在液体表面和固体之间。此外,液滴形状的变化改变了流动模式,进一步增加了溶质向液滴内部的移动。这些内部沉积物被称为“咖啡脊”或“咖啡眼”,以前在涉及含有聚合物的液滴的实验中已经看到。然而,咖啡脊的形成是相对知之甚少相比,它的环对应,尽管它的关键作用,在最后的残留模式。事实上,在一些应用中,咖啡脊可能比咖啡环更成问题,例如在QLED屏幕的印刷中。因此,更好地理解咖啡脊背后的物理学,以及准确预测和理解其形成的方法是一个重要的数学和工程挑战。本项目旨在通过推导咖啡脊形成的数学模型来解决这一挑战。我将开始考虑液滴在浅井中蒸发的问题。这种配置有两个优点。首先,它将抑制咖啡环的形成,以便让我专注于液滴内部的流动动力学,因此,咖啡脊。其次,这样的配置用于OLED/QLED屏幕的印刷,因此该模型具有直接的工业相关性。我将系统地推导出一个简化模型,利用浅的井和液滴中的表面张力的主导作用。然后,我将探索液滴内的溶质分布的演变,使用混合的方法,结合匹配的渐近分析与数值模拟。特别令人感兴趣的是不断变化的存款的关键特征,如咖啡山脊的大小和位置。然后将这些结果与文献中现有的实验数据进行比较。然后,我将在这些结果的基础上考虑更常见的配置,其中液滴在平坦表面上蒸发。通过仔细分析咖啡环和咖啡脊的同时形成,我将发现流动模式如何随时间演变,并研究这两个特征之间的相互作用。该模型将用于通知未来的应用液滴干燥在工业和工程。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gravitational effects on coffee-ring formation during the evaporation of sessile droplets
  • DOI:
    10.1017/jfm.2023.493
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    M. Moore;A. Wray
  • 通讯作者:
    M. Moore;A. Wray
High-order asymptotic methods provide accurate, analytic solutions to intractable potential problems.
高阶渐近方法为棘手的潜在问题提供了准确的分析解决方案。
  • DOI:
    10.1038/s41598-024-54377-2
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wray AW
  • 通讯作者:
    Wray AW
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Madeleine Moore其他文献

The eIF4A2 negative regulator of mRNA translation promotes extracellular matrix deposition to accelerate hepatocellular carcinoma initiation
eIF4A2 mRNA翻译负调节因子促进细胞外基质沉积,加速肝细胞癌发生
  • DOI:
    10.1101/2023.08.16.553544
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Madeleine Moore;L. Pardo;Louise E. Mitchell;Tobias Schmidt;Joseph A. Waldron;S. May;Miryam Muller;Rachael C L Smith;D. Strathdee;S. Bryson;K. Hodge;S. Lilla;Ania Wilczynska;L. Mcgarry;Sarah L. Gillen;Ruban Peter;Georgios Kanellos;C. Nixon;S. Zanivan;O. Sansom;Tom Bird;M. Bushell;J. Norman
  • 通讯作者:
    J. Norman
Nuclear-capture of endosomes drives depletion of nuclear G-actin to promote SRF/MRTF gene expression and cancer cell invasiveness
内体的核捕获驱动核 G 肌动蛋白的消耗,从而促进 SRF/MRTF 基因表达和癌细胞侵袭
  • DOI:
    10.21203/rs.3.rs-50672/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    S. Marco;Matthew P. Neilson;Madeleine Moore;Arantxa Pérez;Holly Hall;Louise E. Mitchell;G. R. Blanco;A. Hedley;S. Zanivan;J. Norman
  • 通讯作者:
    J. Norman
Heightened Appearance Concerns as a Transdiagnostic Construct: Diagnostic and Clinical Features among Women
  • DOI:
    10.1007/s10608-025-10642-w
  • 发表时间:
    2025-07-30
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Tapan A. Patel;Madeleine Moore;Jesse R. Cougle
  • 通讯作者:
    Jesse R. Cougle

Madeleine Moore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
  • 批准号:
    2349623
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Continuing Grant
Fundamental Processes at Giant Planets in the Solar System and Beyond: Global heating and Saturn's Raining Rings
太阳系及其他地区巨行星的基本过程:全球变暖和土星雨环
  • 批准号:
    ST/X003426/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Fellowship
Highly Acidifying Intravaginal Rings with Lactobacillus Probiotics to Treat Bacterial Vaginosis
含乳酸菌益生菌的高度酸化阴道环可治疗细菌性阴道病
  • 批准号:
    10699458
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Development of Chemical Transformations of Benzen Rings Using Monocyclic Borepins as Key Intermediates
以单环 Borepins 作为关键中间体的苯环化学转化研究进展
  • 批准号:
    23K13738
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Synthetic Method for Medium-Sized Rings with Heterobimetallic Complexes bearing Catalytic Pocket
带催化袋的异双金属配合物中型环的合成方法开发
  • 批准号:
    23K13735
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Preparation of Axially Chiral Molecules with Circularly Polarized Luminescence: Derived from pai-pai Interaction of Heteroaromatic Rings
具有圆偏振发光的轴向手性分子的制备:源自杂芳环的排排相互作用
  • 批准号:
    23K17922
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Rings and Clamps around DNA in Asgard Archaeal cells: Insights into DNA replication and repair from our closest prokaryotic ancestors
阿斯加德古菌细胞中 DNA 周围的环和夹:从我们最接近的原核祖先那里深入了解 DNA 复制和修复
  • 批准号:
    2883516
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Studentship
LEAPS-MPS: Functional Identities, Nilpotent Rings, and Garside Shadows
LEAPS-MPS:功能恒等式、幂零环和 Garside Shadows
  • 批准号:
    2316995
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Towards the theory of Arf rings of higher dimension
迈向高维Arf环理论
  • 批准号:
    23K03058
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Localization of Harish-Chandra modules and descent of rings of definition
Harish-Chandra 模块的本地化和定义环的下降
  • 批准号:
    22KJ2045
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了