Transforming the Objective Real-world measUrement of Symptoms (TORUS)
改变症状的客观现实测量 (TORUS)
基本信息
- 批准号:EP/X036146/1
- 负责人:
- 金额:$ 787.12万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The holy grail of a cure for Parkinson's disease has been held back for decades by the extreme difficulty of measuring whether proposed new drugs actually improve the patient's symptoms and daily life. The TORUS research programme aims to solve that problem through a novel platform of sensing technologies for use in patients' own homes along with an advanced data fusion and machine learning pipeline that measures changes in specific mobility-related behaviours over weeks and months.Neurological disorders are the single largest cause of disability - in the UK alone there are 150,000 people with Parkinson's disease, the fastest-growing neurological condition. Parkinson's disease is incurable, and symptoms worsen over time, severely reducing quality of life and creating heavy burdens on the patient's family. The cost to the NHS each year is £375M, with families and social services contributing a further £877M (Centre for Health & Social Care Research, 2017). The number of people with Parkinson's disease in the UK is expected to nearly double by 2040.To get a new drug to market, pharmaceutical (pharma) companies need to evidence by a clinical trial whether the drug improves symptoms such as freezing when walking, tremor and the ability to undertake daily tasks such as standing up from sitting or moving between rooms. Currently, to gather this evidence, each patient in the trial must travel to hospital to be observed performing standardised tests by a clinician. However, these (at most) monthly "snapshot" samples of symptoms are a poor representation of the hour-by-hour variation of the patient's true symptoms. The vision of TORUS is therefore to create the capability to autonomously, continuously and objectively measure symptoms of illness (mobility-related activities of daily living) many times every day during the clinical trial of a new drug, in the patient's own home and for months at a timeTORUS will achieve this goal by using a wrist-worn wearable integrated synergistically with AI-enabled cameras. The data from the wearable and cameras is fused to give metrics of the quality of mobility-related activities. The programme concluses with a clinical proof of concept.
治疗帕金森病的圣杯已经被推迟了几十年,因为很难衡量拟议的新药是否真的改善了患者的症状和日常生活。TORUS研究项目旨在通过一个新的传感技术平台来解决这个问题,该平台可用于患者自己的家中,沿着先进的数据融合和机器学习管道,可以测量数周和数月内与特定移动相关的行为的变化。神经系统疾病是导致残疾的最大原因-仅在英国就有15万人患有帕金森病,发展最快的神经系统疾病帕金森病是无法治愈的,症状会随着时间的推移而恶化,严重降低生活质量,给患者家庭带来沉重的负担。NHS每年的成本为3.75亿英镑,家庭和社会服务贡献了8.77亿英镑(健康与社会护理研究中心,2017年)。到2040年,英国帕金森病患者的数量预计将增加近一倍。为了将新药推向市场,制药公司需要通过临床试验证明该药物是否能改善症状,如行走时的冻结,震颤以及承担日常任务的能力,如从坐着站起来或在房间之间移动。目前,为了收集这些证据,试验中的每一位患者都必须前往医院接受临床医生的标准化测试。然而,这些(最多)每月的症状“快照”样本不能很好地代表患者真实症状的逐小时变化。因此,TORUS的愿景是在新药临床试验期间,在患者自己的家中,每天多次自主,连续和客观地测量疾病症状(与日常生活活动相关的活动)的能力,并且TORUS将通过使用与AI功能相机协同集成的腕戴式可穿戴设备来实现这一目标。来自可穿戴设备和相机的数据被融合,以提供与移动相关的活动质量的指标。该方案的结论与临床概念的证明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Craddock其他文献
Optimising TinyML with quantization and distillation of transformer and mamba models for indoor localisation on edge devices
- DOI:
10.1038/s41598-025-94205-9 - 发表时间:
2025-03-24 - 期刊:
- 影响因子:3.900
- 作者:
Thanaphon Suwannaphong;Ferdian Jovan;Ian Craddock;Ryan McConville - 通讯作者:
Ryan McConville
Ian Craddock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Craddock', 18)}}的其他基金
LEAP (Leadership Engagement Acceleration & Partnership) - an EPSRC Digital Health Hub
LEAP(领导力参与加速
- 批准号:
EP/X031349/1 - 财政年份:2023
- 资助金额:
$ 787.12万 - 项目类别:
Research Grant
SPHERE - A Sensor Platform for HEalthcare in a Residential Environment (IRC Next Steps)
SPHERE - 住宅环境中的医疗保健传感器平台(IRC 后续步骤)
- 批准号:
EP/R005273/1 - 财政年份:2018
- 资助金额:
$ 787.12万 - 项目类别:
Research Grant
EPSRC IRC 'SPHERE' - a Sensor Platform for HEalthcare in a Residential Environment
EPSRC IRC SPHERE - 住宅环境中的医疗保健传感器平台
- 批准号:
EP/K031910/1 - 财政年份:2013
- 资助金额:
$ 787.12万 - 项目类别:
Research Grant
Hybrid UWB Radar/Inverse Scattering for Breast Cancer Imaging
用于乳腺癌成像的混合 UWB 雷达/逆散射
- 批准号:
EP/J00717X/1 - 财政年份:2012
- 资助金额:
$ 787.12万 - 项目类别:
Research Grant
Enhanced UWB Radar Imaging of Breast Tumours
乳腺肿瘤的增强型 UWB 雷达成像
- 批准号:
EP/G003084/1 - 财政年份:2008
- 资助金额:
$ 787.12万 - 项目类别:
Research Grant
相似海外基金
Objective assessment of vocal fatigue in laboratory and real-world settings
实验室和现实环境中声音疲劳的客观评估
- 批准号:
10723486 - 财政年份:2023
- 资助金额:
$ 787.12万 - 项目类别:
Development of real-time support systems based on continuous and objective evaluation of work engagement
基于工作投入的持续、客观评估的实时支持系统的开发
- 批准号:
22K18652 - 财政年份:2022
- 资助金额:
$ 787.12万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Objective Measures of Real-World Cochlear Implant Outcome Using Psychoacoustics and Electrophysiology
利用心理声学和电生理学客观测量现实世界的人工耳蜗植入效果
- 批准号:
469039 - 财政年份:2022
- 资助金额:
$ 787.12万 - 项目类别:
Operating Grants
Cardiovascular implications of sleep characteristics using real-world objective sleep data
使用真实世界客观睡眠数据的睡眠特征对心血管的影响
- 批准号:
10256810 - 财政年份:2020
- 资助金额:
$ 787.12万 - 项目类别:
Development of a Real-Time Computer-Aided Diagnosis System Based on Objective Indicators for Gastrointestinal Endoscopic Image Analysis
基于胃肠内窥镜图像分析客观指标的实时计算机辅助诊断系统的开发
- 批准号:
20H04157 - 财政年份:2020
- 资助金额:
$ 787.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Distributed Evolutionary Computation for Real-time Many-Objective Optimization in Smart City
智慧城市实时多目标优化的分布式进化计算研究
- 批准号:
19K12162 - 财政年份:2019
- 资助金额:
$ 787.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real-time brain imaging and neural self-regulation elucidates the link between objective neurophysiology and subjective experience.
实时大脑成像和神经自我调节阐明了客观神经生理学和主观体验之间的联系。
- 批准号:
475340-2015 - 财政年份:2017
- 资助金额:
$ 787.12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
SBIR Phase I: Real-time Objective Model Analysis Tool and Multi-Model Ensemble Forecast System
SBIR第一阶段:实时目标模式分析工具和多模式集合预报系统
- 批准号:
1621558 - 财政年份:2016
- 资助金额:
$ 787.12万 - 项目类别:
Standard Grant
SBIR Phase I: Real-time Continuous Sensor-based Objective Scoring and Reporting of Acute Pain
SBIR 第一阶段:基于传感器的实时连续客观评分和急性疼痛报告
- 批准号:
1548528 - 财政年份:2016
- 资助金额:
$ 787.12万 - 项目类别:
Standard Grant
Real-time brain imaging and neural self-regulation elucidates the link between objective neurophysiology and subjective experience.
实时大脑成像和神经自我调节阐明了客观神经生理学和主观体验之间的联系。
- 批准号:
475340-2015 - 财政年份:2016
- 资助金额:
$ 787.12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral