A general continuum theory of polycrystalline materials
多晶材料的一般连续介质理论
基本信息
- 批准号:EP/X037800/1
- 负责人:
- 金额:$ 10.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Materials such as ice, rock salts and the Earth's mantle flow as highly viscous fluids over a long time. For example, the flow of a glacier is similar to the spread of golden syrup over a kitchen table. However, due to the crystal structure of ice and rock at small scales, they flow in interesting and unusual ways compared to normal fluids. Such flows are called polycrystalline. These flows are of critical importance: the flow of ice is the main contributor to sea-level rise and understanding the flow of the Earth's mantle is central to plate tectonics. Understanding the flow of salt in caverns is also important as there is an increasing need to use these caverns to store hydrogen as part of the net zero energy transition.Polycrystalline flows form a crystal structure on a small scale, which allows them to flow faster in certain directions, depending on the orientation of the crystals. Therefore, understanding and predicting how the crystal structure evolves is key for predicting these flows at a large scale. This proposal addresses this challenge by developing a new approach of formulating equations and computer models that can predict the microstructure of any polycrystalline material. The key development is to model the crystal structure using a statistical field that averages over many crystal grains, rather than modelling grains directly. This "continuum" approach is analogous to how flow of fluids like water and air can be modelled by average quantities like velocity and density, rather than by looking at individual molecules. The approach reduces the model to relatively few empirical parameters, which can be systematically calibrated using experimental data. By circumventing the need to resolve each grain of the crystal structure within the model, the continuum approach confers substantial gains in terms of accuracy and predictive capability, opening news doors to efficient and highly resolved simulations of polycrystalline flows. Long-term, the results will support improved predictions for future sea-level rise due to ice-sheet flow, better understanding of the Earth's mantle and plate tectonics, and better understanding of the flow of other materials, such as rock salts in caverns - helping with the transition to net zero.
冰、岩盐和地幔等物质在很长一段时间内以高粘性流体的形式流动。例如,冰川的流动类似于厨房桌子上的金色糖浆。然而,由于小尺度冰和岩石的晶体结构,与普通流体相比,它们以有趣而不寻常的方式流动。这种流动被称为多晶流。这些流动至关重要:冰的流动是海平面上升的主要原因,而了解地幔的流动是板块构造学的核心。了解盐在洞穴中的流动也很重要,因为越来越多的人需要利用这些洞穴来储存氢,作为净零能量过渡的一部分。多晶流动在小范围内形成一种晶体结构,这使得它们在特定方向上流动得更快,这取决于晶体的取向。因此,了解和预测晶体结构如何演变是大规模预测这些流动的关键。本提案通过开发一种新的公式和计算机模型来预测任何多晶材料的微观结构,从而解决了这一挑战。关键的发展是利用一个统计场对许多晶粒进行平均来模拟晶体结构,而不是直接模拟晶粒。这种“连续体”方法类似于水和空气等流体的流动可以通过速度和密度等平均量来建模,而不是通过观察单个分子。该方法将模型简化为相对较少的经验参数,可以使用实验数据进行系统校准。通过避免在模型中解析晶体结构的每个颗粒的需要,连续体方法在准确性和预测能力方面获得了实质性的收益,为高效和高分辨率的多晶流模拟打开了新的大门。从长远来看,这些结果将有助于改进对未来由于冰盖流动导致的海平面上升的预测,更好地了解地幔和板块构造,以及更好地了解洞穴中岩盐等其他物质的流动——有助于向净零过渡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Pegler其他文献
Samuel Pegler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Theory of physical properties of friction in macroscopic objects by continuum analysis
通过连续介质分析研究宏观物体摩擦物理性质的理论
- 批准号:
22KJ2190 - 财政年份:2023
- 资助金额:
$ 10.23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
BRITE Pivot: An Integrated Theory of Continuum and Statistical Mechanics of Active Soft Matter
BRITE Pivot:活性软物质连续体和统计力学的综合理论
- 批准号:
2227556 - 财政年份:2023
- 资助金额:
$ 10.23万 - 项目类别:
Standard Grant
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPIN-2019-05998 - 财政年份:2022
- 资助金额:
$ 10.23万 - 项目类别:
Discovery Grants Program - Individual
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPIN-2019-05998 - 财政年份:2021
- 资助金额:
$ 10.23万 - 项目类别:
Discovery Grants Program - Individual
Continuum-Based Modeling of the Mechanical Behavior of Nanocomposites via Microstructure and Elasticity Theory for Solid Surfaces
通过固体表面的微观结构和弹性理论对纳米复合材料的机械行为进行基于连续体的建模
- 批准号:
RGPIN-2017-03716 - 财政年份:2021
- 资助金额:
$ 10.23万 - 项目类别:
Discovery Grants Program - Individual
Scattering theory and continuum limits of discrete Schrodinger operators
离散薛定谔算子的散射理论和连续谱极限
- 批准号:
21K20337 - 财政年份:2021
- 资助金额:
$ 10.23万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPIN-2019-05998 - 财政年份:2020
- 资助金额:
$ 10.23万 - 项目类别:
Discovery Grants Program - Individual
Continuum-Based Modeling of the Mechanical Behavior of Nanocomposites via Microstructure and Elasticity Theory for Solid Surfaces
通过固体表面的微观结构和弹性理论对纳米复合材料的机械行为进行基于连续体的建模
- 批准号:
RGPIN-2017-03716 - 财政年份:2020
- 资助金额:
$ 10.23万 - 项目类别:
Discovery Grants Program - Individual
Mathematics and Philosophy of Set Theory of the Continuum
连续统集合论的数学和哲学
- 批准号:
20K00010 - 财政年份:2020
- 资助金额:
$ 10.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPAS-2019-00089 - 财政年份:2020
- 资助金额:
$ 10.23万 - 项目类别:
Discovery Grants Program - Accelerator Supplements