Advanced Device Concepts for Next-Generation Photovoltaics

下一代光伏的先进设备概念

基本信息

  • 批准号:
    EP/X038777/1
  • 负责人:
  • 金额:
    $ 978.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Evolution in device architectures have been central to the performance enhancements in all photovoltaic (PV) technologies. For silicon PV cells, they started as p-n junctions originating from the early p and n-doping studies in Bell Labs, USA, in the 1950s and have progressed to passivated interfaces with charge selective "heterojunctions" sandwiching homogeneously doped single crystal wafers. For metal halide perovskites, the early PV embodiments comprised perovskite nanocrystals "sensitizing" mesoporous TiO2 and have progressed to solid-perovskite absorber layers sandwiched between planar heterojunctions with increasingly well passivated interfaces. However, even a perfectly-passivated solar cell fabricated from a single solar absorber material has its limitations, with theoretical maximum solar-to-electric power conversion efficiencies topping out at 30%. The most popular route to circumvent these limitations is to create "multi-junction" or tandem solar cells, where more than one solar absorber material and device are stacked on top of each other, which leads to a theorised increase in efficiency to 45% for two junctions and over 50% for three junctions. The top runner for tandem cells is combining metal-halide perovskites with silicon, which have already demonstrated over 31% efficiency, and one of our partners, Oxford PV, is ramping up production of the first perovskite-on-silicon tandem technology. However, tandem cells are not the final word in PV efficiency. Our ambition is to carry out multidisciplinary research, via inter-linked work streams, that will explore and conceive new photovoltaic device concepts and paradigms, enabling the next major step-change in photovoltaic efficiency.We base our vision on two key questions; what do we predict to be the next game-changing transformation to PV technology? and what fundamental science and technical advances do we need to develop now, in order to deliver such a paradigm shift? We target 4 device concepts; * CONCENTRATOR PV, which operate under concentrated sun light to result in a 20 to 30% relative increase in power conversion efficiency as compared to "1-sun" operation technologies; * QUANTUM CUTTING, for which rare-earth doping of novel halide semiconductors can result in the generation of two low-energy photons for every high-energy photon absorbed, boosting the photocurrent generation in a PV device through photon-multiplication; * HOT-CARRIER COLLECTION, where carrier cooling losses are overcome by selectively extracting hot charge from a solar cell, boosting the theoretical efficiency limit all the way to 66%; * and a novel idea of a "PHOTON-TRANSPORT" cell, designed so that the majority of charges are transported to charge collection interfaces via photons, with the elimination of minority carriers from the bulk of the absorber negating internal recombination losses and enabling PV cells to reach their theoretical "radiative" limit. The PV absorber materials will be based on metal-halide perovskites, silicon, and novel low-band-gap chalcogenide-halide semiconductors designed and discovered in this project. Addressing these future advanced concepts through a holistic approach will enable us to make the first key scientific discoveries and important major technical advances in what will become the next generation of PV technologies for beyond 2030.
设备架构的演变一直是所有光伏(PV)技术性能增强的核心。对于硅光伏电池,它们最初是p-n结,起源于20世纪50年代美国贝尔实验室的早期p-n掺杂研究,后来发展到钝化界面,在均匀掺杂的单晶片中夹着电荷选择性的“异质结”。对于金属卤化物钙钛矿,早期的PV实施例包括钙钛矿纳米晶“敏化”介孔二氧化钛,并已进展为固体钙钛矿吸收层夹在平面异质结之间,具有越来越好的钝化界面。然而,即使是由单一太阳能吸收材料制成的完全钝化的太阳能电池也有其局限性,理论上最高太阳能-电力转换效率高达30%。绕过这些限制的最受欢迎的方法是创造“多结”或串联太阳能电池,即一种以上的太阳能吸收材料和器件堆叠在一起,这导致理论上两个结的效率提高到45%,三个结的效率提高50%以上。串联电池的领跑者是将金属卤化物钙钛矿与硅相结合,这已经证明了超过31%的效率,我们的合作伙伴之一牛津PV正在加大第一个钙钛矿-硅串联技术的生产。然而,串联电池并不是光伏效率的最终定论。我们的目标是通过相互关联的工作流程开展多学科研究,探索和构思新的光伏设备概念和范例,使光伏效率的下一步重大变化成为可能。我们的愿景基于两个关键问题:我们预测下一次改变游戏规则的光伏技术转型是什么?为了实现这样的范式转变,我们现在需要发展哪些基础科学和技术进步?我们的目标是4个器件概念;*聚光器光伏,其工作在集中太阳光下,导致功率转换效率相对提高20%至30%,与“一太阳”运行技术相比;*量子切割,对于量子切割,新型卤化物半导体的稀土掺杂可以导致每吸收一个高能光子产生两个低能光子,通过光子倍增提高光伏器件中的光电流产生;*热载流子收集,其中载流子冷却损失通过选择性地从太阳能电池中提取热电荷来克服,将理论效率极限一路提高到66%;*“光子传输”电池的新概念,其设计使大多数电荷通过光子传输到电荷收集界面,从吸收体的主体中消除少数载流子,抵消了内部复合损失,并使光伏电池达到其理论上的“辐射”极限。光伏吸收材料将以金属卤化物钙钛矿、硅和本项目中设计和发现的新型低禁带硫卤化物半导体为基础。通过整体方法解决这些未来的先进概念,将使我们能够在2030年后的下一代光伏技术方面取得第一批关键的科学发现和重要的重大技术进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Snaith其他文献

Henry Snaith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Snaith', 18)}}的其他基金

SEALPTSC Strain and Photonic Engineering Toward Stable, Efficient, and Large-scale All-perovskite Triple-junction Solar Cells
SEALPTSC 应变和光子工程实现稳定、高效和大规模全钙钛矿三结太阳能电池
  • 批准号:
    EP/Y029216/1
  • 财政年份:
    2023
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Fellowship
ECCS-EPSRC Superlattice Architectures for Efficient and Stable Perovskite LEDs
用于高效稳定钙钛矿 LED 的 ECCS-EPSRC 超晶格架构
  • 批准号:
    EP/V061747/1
  • 财政年份:
    2021
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Research Grant
All-perovskite Multi-junction Solar Cells
全钙钛矿多结太阳能电池
  • 批准号:
    EP/S004947/1
  • 财政年份:
    2018
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Research Grant
Organic-inorganic perovskite hybrid tandem solar cells
有机-无机钙钛矿杂化串联太阳能电池
  • 批准号:
    EP/M024881/1
  • 财政年份:
    2015
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Research Grant
A National Thin-Film Cluster Facility for Advanced Functional Materials
国家先进功能材料薄膜集群设施
  • 批准号:
    EP/M022900/1
  • 财政年份:
    2015
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Research Grant
Enhanced solar light harvesting and charge transport in dye-sensitized solar cells
增强染料敏化太阳能电池中的太阳光收集和电荷传输
  • 批准号:
    EP/G049653/1
  • 财政年份:
    2009
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Research Grant
Self-organized nanostructures in hybrid solar cells
混合太阳能电池中的自组织纳米结构
  • 批准号:
    EP/F065884/1
  • 财政年份:
    2008
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Research Grant

相似海外基金

Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
  • 批准号:
    2408972
  • 财政年份:
    2023
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Standard Grant
A Business / Market Opportunity Assessment for Hardware Concepts & Device Designs for Brain-Machine Interfacing
硬件概念的商业/市场机会评估
  • 批准号:
    571002-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Idea to Innovation
Inventive concepts of 3D geo-stress sensing device using equivalent resistance of conductive particles subjected to contact pressures
使用受到接触压力的导电颗粒的等效电阻的3D地应力传感装置的发明概念
  • 批准号:
    20H02242
  • 财政年份:
    2020
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spin Current Phenomena in Non-Collinear Antiferromagnets:From Fundamental Physics to Device Concepts
非共线反铁磁体中的自旋流现象:从基础物理到器件概念
  • 批准号:
    1915849
  • 财政年份:
    2019
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Standard Grant
CAREER: Development of High-Efficiency Ultraviolet Optoelectronics: Physics and Novel Device Concepts
职业:高效紫外光电子学的开发:物理学和新颖的设备概念
  • 批准号:
    1751675
  • 财政年份:
    2018
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Standard Grant
A business / market opportunity assessment for hardware concepts & device designs for deep learning (DL)
硬件概念的商业/市场机会评估
  • 批准号:
    508578-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Idea to Innovation
Novel device concepts for generating spin currents in graphene
在石墨烯中产生自旋电流的新颖设备概念
  • 批准号:
    323829711
  • 财政年份:
    2016
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Research Grants
Innovative device to reduce myocardial infarct size and no-reflow : Proof of concepts in humans
减少心肌梗塞面积和无复流的创新装置:在人体中的概念证明
  • 批准号:
    294126
  • 财政年份:
    2013
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Operating Grants
SBIR Phase I: Improved Learning and Retention of Health Science Concepts Through the Use of a Just-in-Time Teaching, Mobile Device Simulations
SBIR 第一阶段:通过使用即时教学、移动设备模拟来提高健康科学概念的学习和保留
  • 批准号:
    1315043
  • 财政年份:
    2013
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Standard Grant
Quantum-mechanical device concepts including ultra-thin functional ALD-films for terahertz applications
量子力学器件概念,包括用于太赫兹应用的超薄功能性 ALD 薄膜
  • 批准号:
    226970965
  • 财政年份:
    2013
  • 资助金额:
    $ 978.54万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了