Development of an In-Silico Research Framework for Accelerating the Translation of Quantitative Photon-Counting Spectral Imaging to the Clinic
开发计算机模拟研究框架,加速定量光子计数光谱成像向临床的转化
基本信息
- 批准号:EP/X04095X/1
- 负责人:
- 金额:$ 87.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Personalising patient treatments and assessing treatment response are both tasks which could benefit greatly from molecular information. SPECT and PET offer molecular imaging but are expensive, have relatively poor spatial resolution and require specialist radio-pharmaceuticals and facilities. MRI can provide some molecular information, but these scanners are slow and many patients are unable to use MRI machines due to metal implants, pacemakers or claustrophobia. Ideally molecular imaging could be obtained from x-ray images, as these systems are fast, offer excellent spatial resolution and are suitable for almost all patient populations. Unfortunately, conventional x-ray machines are unable to provide molecular information, offer poor soft tissue contrast and deliver significant ionising radiation doses. All three of these problems are addressed in a new x-ray imaging technology, known as x-ray photon counting spectral imaging (x-CSI), which provides MRI comparable soft tissue contrast with CT spatial resolution and only 1 fifth of the radiation dose.x-CSI technology is just now entering clinical trials, with all major healthcare manufacturers working on developing their own system. Yet many important questions remain regarding how x-CSI can best be exploited for patient benefit. What are the best pixel sizes, sensor materials, signal correction schemes etc.? How should the spectral data be reconstructed? What clinical applications would benefit most from the added information? Computer simulations are normally used to answer these questions, however x-CSI simulations are significantly more complicated than conventional x-ray simulations due to the higher sensitivity to distortions from short range physics processes and consequently the more complicated electronics required. There are thus currently no tools capable of modelling an x-CSI scanner in enough detail to answer these questions fully. This project seeks to redress this by:1. Extending our existing simulation framework to better model short range physics processes that degrade x-CSI images and the novel electronics proposed to correct for them. We would also add 3D image reconstruction and image analysis tools so that imaging tasks used in treating cancer patients can be simulated2. Using the completed framework to optimise an x-CSI scanner for each of three different cancer related imaging tasks, considering a range of different cancer types as identified by our oncologist and radiologist collaborators3. Optimising a single general-purpose x-CSI scanner for performing all three clinical imaging tasks4. Comparing the general-purpose scanner in each imaging task with the scanner optimised for that task, quantifying any performance differencesThis work would provide both immediate and longer-term benefits to a range of stakeholders. By quantifying performance differences between a general-purpose and task optimised scanner for each clinical imaging task, this work will be able to determine whether a general-purpose scanner will be suitable in oncology, or whether task optimised x-CSI scanners are necessary. Combined with the optimised x-CSI scanner designs determined for the various oncology tasks, this information will both inform healthcare manufacturers seeking to adapt their scanners for oncology, and empower doctors with the information needed to argue for specialist scanners where these could affect clinical decisions. Longer term, publishing instructions for the simulation framework will allow more researchers to engage in x-CSI research by providing a low-cost source alternative to having a physical x-CSI scanner, unrestricted access to the data it generates and the ability to know the ground truth precisely at each stage of the imaging chain.This project would thus accelerate the translation of the x-CSI from the lab to the clinic and ensure that transfer occurs in a way which maximises patient benefit from this cutting-edge technology.
个性化患者治疗和评估治疗反应都是可以从分子信息中获益的任务。SPECT和PET提供分子成像,但价格昂贵,空间分辨率相对较差,需要专门的放射药物和设备。核磁共振成像可以提供一些分子信息,但这些扫描仪速度很慢,许多患者由于金属植入物、起搏器或幽闭恐惧症而无法使用核磁共振成像机器。理想情况下,分子成像可以从x射线图像中获得,因为这些系统速度快,提供极好的空间分辨率,适用于几乎所有患者群体。不幸的是,传统的x光机无法提供分子信息,提供较差的软组织对比,并提供显著的电离辐射剂量。所有这三个问题都在一种新的x射线成像技术中得到了解决,这种技术被称为x射线光子计数光谱成像(x-CSI),它提供了与CT相当的MRI软组织对比度空间分辨率,并且只有辐射剂量的五分之一。x-CSI技术现在刚刚进入临床试验阶段,所有主要的医疗保健制造商都在开发自己的系统。然而,关于如何最好地利用x-CSI为患者造福,仍存在许多重要的问题。什么是最好的像素尺寸,传感器材料,信号校正方案等?如何重建光谱数据?哪些临床应用将从增加的信息中获益最大?计算机模拟通常用于回答这些问题,但是x-CSI模拟比传统的x射线模拟要复杂得多,因为对短程物理过程的扭曲具有更高的灵敏度,因此需要更复杂的电子设备。因此,目前还没有工具能够对x-CSI扫描仪进行足够详细的建模,以充分回答这些问题。本项目试图纠正这一点:1。扩展我们现有的仿真框架,以更好地模拟降低x-CSI图像的短程物理过程,并提出新的电子器件来纠正它们。我们还将增加3D图像重建和图像分析工具,以便模拟用于治疗癌症患者的成像任务2。考虑到我们的肿瘤学家和放射学合作伙伴确定的一系列不同的癌症类型,使用完整的框架来优化x-CSI扫描仪,以完成三种不同的癌症相关成像任务。优化单一通用x-CSI扫描仪执行所有三个临床成像任务4。将每个成像任务中的通用扫描仪与针对该任务优化的扫描仪进行比较,量化任何性能差异。这项工作将为一系列利益相关者提供即时和长期的利益。通过量化通用扫描仪和任务优化扫描仪在每个临床成像任务中的性能差异,这项工作将能够确定通用扫描仪是否适用于肿瘤学,或者任务优化x-CSI扫描仪是否必要。结合针对各种肿瘤任务确定的优化x-CSI扫描仪设计,这些信息既可以告知医疗保健制造商寻求调整其肿瘤扫描仪,也可以为医生提供必要的信息,以支持可能影响临床决策的专业扫描仪。从长远来看,发布模拟框架的说明将允许更多的研究人员参与x-CSI研究,提供一个低成本的来源,替代物理x-CSI扫描仪,不受限制地访问其生成的数据,以及在成像链的每个阶段精确了解地面真相的能力。因此,该项目将加速x-CSI从实验室到临床的转化,并确保以最大限度地提高患者从这项尖端技术中获益的方式进行转移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitra Darambara其他文献
Dimitra Darambara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitra Darambara', 18)}}的其他基金
High-Flux Multi-Spectral X-Ray Imaging for Accurate and Early Cancer Diagnosis
高通量多光谱 X 射线成像可实现准确的早期癌症诊断
- 批准号:
ST/K002104/1 - 财政年份:2013
- 资助金额:
$ 87.63万 - 项目类别:
Research Grant
High-Flux Multi-Spectral X-Ray Imaging with Energy-Sensitive CZT Detectors
使用能量敏感型 CZT 探测器进行高通量多光谱 X 射线成像
- 批准号:
ST/I003134/1 - 财政年份:2011
- 资助金额:
$ 87.63万 - 项目类别:
Research Grant
相似国自然基金
in silico生物分子网络动力学参数高速与高精度自动化估计的研究
- 批准号:31301100
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
In silico/In vitro偶联ACAT生理模型筛选药物及其制剂的生物利用度/生物等效性
- 批准号:81173009
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Development of an in silico prediction model and practical research for evaluating skin sensitization
开发计算机预测模型和评估皮肤过敏的实际研究
- 批准号:
23K06133 - 财政年份:2023
- 资助金额:
$ 87.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A 3Rs platform for glial research: From animal to human to in-silico models
神经胶质研究的 3R 平台:从动物到人类再到计算机模型
- 批准号:
NC/X001067/1 - 财政年份:2022
- 资助金额:
$ 87.63万 - 项目类别:
Research Grant
StomachSim - A Biomimetic In-Silico Simulator Based Research Tool for Studying Drug Dissolution in the Stomach
StomachSim - 一种基于仿生计算机模拟器的研究工具,用于研究药物在胃中的溶解情况
- 批准号:
10041893 - 财政年份:2020
- 资助金额:
$ 87.63万 - 项目类别:
EAGER: III: Collaborative Research: In silico Algorithm for Assessing the Effects of Amino Acid Insertion and Deletion Mutations
EAGER:III:协作研究:评估氨基酸插入和缺失突变影响的计算机算法
- 批准号:
2031260 - 财政年份:2020
- 资助金额:
$ 87.63万 - 项目类别:
Standard Grant
EAGER: III: Collaborative Research: RUI: In silico Algorithm for Assessing the Effects of Amino Acid Insertion and Deletion Mutations
EAGER:III:合作研究:RUI:用于评估氨基酸插入和缺失突变影响的计算机算法
- 批准号:
2031283 - 财政年份:2020
- 资助金额:
$ 87.63万 - 项目类别:
Standard Grant
StomachSim - A Biomimetic In-Silico Simulator Based Research Tool for Studying Drug Dissolution in the Stomach
StomachSim - 一种基于仿生硅模拟器的研究工具,用于研究胃中药物的溶解
- 批准号:
10231142 - 财政年份:2020
- 资助金额:
$ 87.63万 - 项目类别:
Collaborative Research: An in vivo/in silico Approach to Delineate the Effect of Age on Pressure Ulcer Susceptibility
合作研究:描述年龄对压疮易感性影响的体内/计算机方法
- 批准号:
1916668 - 财政年份:2019
- 资助金额:
$ 87.63万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven integration of biological with in-silico experiments to determine mechanistic effects of N-glycosylation on cellular electromechanical functions
合作研究:数据驱动的生物与计算机实验相结合,以确定 N-糖基化对细胞机电功能的机械效应
- 批准号:
1856199 - 财政年份:2019
- 资助金额:
$ 87.63万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven integration of biological with in-silico experiments to determine mechanistic effects of N-glycosylation on cellular electromechanical functions
合作研究:数据驱动的生物与计算机实验相结合,以确定 N-糖基化对细胞机电功能的机械效应
- 批准号:
1856132 - 财政年份:2019
- 资助金额:
$ 87.63万 - 项目类别:
Standard Grant
Collaborative Research: An in vivo/in silico Approach to Delineate the Effect of Age on Pressure Ulcer Susceptibility
合作研究:描述年龄对压疮易感性影响的体内/计算机方法
- 批准号:
1916663 - 财政年份:2019
- 资助金额:
$ 87.63万 - 项目类别:
Standard Grant