High-Density Active Silicon Carbide Power Electronics: Enabling Responsive Power Conversion

高密度活性碳化硅电力电子器件:实现响应式电力转换

基本信息

  • 批准号:
    EP/Y000307/1
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

In pursuit of Carbon net-zero, it is imperative to develop technologies that enhance the efficiency and reliability of energy conversion, e.g. in drivetrain and rapid chargers of electric vehicles (EVs). To put this into context, the larger battery size (i.e. 350 kWh at 800 V & 440 A for higher consumption) and long-range driving nature of heavy-duty EVs mandate ubiquitous access to extremely fast chargers at 350 kW for financially justifiable charging delays. These are proposed to directly connect to 11 kV feeders by high-frequency solid-state-transformers (SST), needing energy-dense fast power modules. Literature indicates that the emergence of wide-bandgap semiconductor devices, especially Silicon Carbide devices, enables us to deliver ultra-efficient reliable converters that deliver the next leap.Wide-bandgap power electronics is, however, currently being slowed down due to issues such as high dV/dt, common-mode interference and degradations. This means the full potential of wide-bandgap devices is still far from being obtained. The IEEE International Technology Roadmap for Wide-Bandgap Power Semiconductors (ITRW) has indicated that to unlock this potential, these limitations must be broken-through by 2028. As the UK is leading toward automotive electrification with a ban on the sale of new petrol & diesel engines by 2030, the UK needs to develop this technology locally, and earlier than this, to remain a global competitor in 'driving the electric revolution'.Research on SiC devices has shown that they are prone to progressive degradations, with a 'memory' effect that leads to a drift of electrothermal parameters away from the datasheet values. This can lead to failures in long-term operations. Nevertheless, it is demonstrated that under certain conditions the devices can recover to close to the initial state, if the devices are subjected to specific electrical and thermal conditions. This proposal, in a nutshell, aims to take advantage of these findings to explore ways of controlling and reversing degradation in devices using non-contact sensors which feed information to smart, active gate drivers, which, in turn, control the recovery of the power devices.To this end, this New Investigator Award project aims to make the power electronic core of these power converters responsive to operating conditions and functional degradations. This will be achieved by closing the loop between detection of change in SiC devices and how devices are controlled via their gates. This would permit SiC devices to be operated safely at higher switching speeds and thus efficiencies, than current datasheet limits allow. This is because datasheet nominal values are conservative in order to take every situation into account, whereas new situational awareness will allow these limits to be safely exceeded when appropriate. This is so important, particularly in the case of SiC power conversion, because whilst it is successfully taking over from silicon, it is also known that the potential performance of SiC is over an order higher than today's systems. Being able to safely break through these nominal limitations will reduce converter volume in cars and aircraft 2x or more, and bring a similar reduction in power loss in wind and solar power generation. Perhaps most importantly, it will reduce operational risk, by changing to safer driving modes as devices age or overheat. For example, this will reduce the cost of offshore wind power generation by generating more power at a lower risk of damage, and allow maintenance to be pre-empted. In the future, responsive power conversion with awareness of operating conditions and degradation could allow electric vehicles to detect the onset of drive failure, and activate a safe mode to get people home.
为了实现碳净零排放,必须开发提高能源转换效率和可靠性的技术,例如电动汽车(EV)的传动系统和快速充电器。为了将这一点放在背景下,重型电动汽车的较大电池尺寸(即800 V和440 A时的350 kWh)和长距离驾驶特性要求普遍使用350 kW的极速充电器,以实现经济上合理的充电延迟。这些建议通过高频固态变压器(SST)直接连接到11 kV馈线,需要能量密集的快速电源模块。文献表明,宽带隙半导体器件(尤其是碳化硅器件)的出现使我们能够提供超高效、可靠的转换器,从而实现下一个飞跃。然而,由于高dV/dt、共模干扰和退化等问题,宽带隙电力电子技术目前正在放缓。这意味着宽带隙器件的全部潜力还远远没有得到实现。IEEE国际宽带隙功率半导体技术路线图(ITRW)指出,要释放这一潜力,必须在2028年之前突破这些限制。随着英国在2030年前禁止销售新的汽油和柴油发动机,英国正在朝着汽车电气化的方向发展,英国需要在当地开发这项技术,并且比这更早,以保持"推动电力革命"的全球竞争对手。对SiC器件的研究表明,它们容易逐渐退化,其具有“记忆”效应,该记忆效应导致SNR参数偏离SNR值。这可能导致长期运营失败。然而,它表明,在某些条件下,设备可以恢复到接近初始状态,如果设备受到特定的电和热条件。简而言之,该提案旨在利用这些发现来探索使用非接触式传感器来控制和逆转器件中的退化的方法,所述非接触式传感器将信息馈送到智能有源栅极驱动器,所述智能有源栅极驱动器进而控制功率器件的恢复。这个新研究者奖项目的目的是使这些功率变换器的功率电子核心对工作条件和功能作出响应。退化。这将通过在SiC器件的变化检测和如何通过它们的栅极控制器件之间闭合回路来实现。这将允许SiC器件以比电流限制所允许的更高的开关速度和效率安全地操作。这是因为,为了考虑到每种情况,新的标称值是保守的,而新的态势感知将允许在适当的时候安全地超过这些限制。这一点非常重要,特别是在SiC功率转换的情况下,因为虽然它成功地取代了硅,但众所周知,SiC的潜在性能比当今的系统高出一个数量级。能够安全地突破这些标称限制将使汽车和飞机中的转换器体积减少2倍或更多,并在风能和太阳能发电中带来类似的功率损耗减少。也许最重要的是,随着设备老化或过热,它将改变为更安全的驾驶模式,从而降低运营风险。例如,这将通过以较低的损坏风险产生更多的电力来降低海上风力发电的成本,并允许预先进行维护。在未来,具有运行条件和退化意识的响应式功率转换可以使电动汽车检测到驱动故障的发生,并激活安全模式让人们回家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saeed Jahdi其他文献

Saeed Jahdi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

光—电驱动下的AIE-active手性高分子CPL液晶器件研究
  • 批准号:
    92156014
  • 批准年份:
    2021
  • 资助金额:
    70.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
光-电驱动下的AIE-active手性高分子CPL液晶器件研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    70 万元
  • 项目类别:

相似海外基金

Element strategic artificial photosynthesis of pharmacologically active agents using a Silicon Nano Array-Metal catalyst
使用硅纳米阵列-金属催化剂的药理活性剂的元素策略人工光合作用
  • 批准号:
    20K15327
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Surveying the Performance of Various Commercially Available Silicon-containing Anode Active Material
调查各种市售含硅负极活性材料的性能
  • 批准号:
    532065-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Development of active molecular device on silicon surface
硅表面活性分子器件的研制
  • 批准号:
    17K05055
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of Si based negative electrode active material for Li ion battery from waste silicon based on non-woven fabric CNT
基于无纺布碳纳米管废硅制备锂离子电池硅基负极活性材料
  • 批准号:
    16K12653
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
DMREF/Collaborative Research: Theory-Enabled Development of 2D Metal Dichalcogenides as Active Elements of On-Chip Silicon-Integrated Optical Communication
DMREF/合作研究:作为片上硅集成光通信有源元件的二维金属二硫化物的理论开发
  • 批准号:
    1435703
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
TEASAR (TErahertz Active Source ARrays)An all-silicon reconfigurable terahertz source array for active imaging beyond 300 GHz
TEASAR(太赫兹有源源阵列)一种全硅可重构太赫兹源阵列,用于 300 GHz 以上的有源成像
  • 批准号:
    240249557
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grants
DMREF/Collaborative Research: Theory-Enabled Development of 2D Metal Dichalcogenides as Active Elements of On-Chip Silicon-Integrated Optical Communication
DMREF/合作研究:作为片上硅集成光通信有源元件的二维金属二硫化物的理论开发
  • 批准号:
    1436330
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Theory-Enabled Development of 2D Metal Dichalcogenides as Active Elements of On-Chip Silicon-Integrated Optical Communication
DMREF/合作研究:作为片上硅集成光通信有源元件的二维金属二硫化物的理论开发
  • 批准号:
    1436626
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI: Active and nonlinear silicon photonics using hybrid thin-film lithium-niobate + silicon
目标:使用混合薄膜铌酸锂硅的有源和非线性硅光子学
  • 批准号:
    1307514
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Syntheses of Nickel and Cobalt Phosphine Complexes as Catalysts for H2 Generation and Covalent Attachment to a Photoelectrochemically Active Silicon Surface
镍和钴膦配合物的合成作为氢气生成和共价连接到光电化学活性硅表面的催化剂
  • 批准号:
    1042009
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了