How bacteria replicate their DNA in spite of barriers, one molecule at a time
细菌如何克服障碍,一次复制一个分子的 DNA
基本信息
- 批准号:BB/W000555/1
- 负责人:
- 金额:$ 54.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
If the information necessary to make and maintain a living organism were contained inside a book, then DNA would represent the book's letters - it is, in effect, the alphabet of life. A key feature of any organism is the ability to replicate these letters, either to make more of itself or to create progeny by creating daughter cells. This crucial process of copying DNA is "DNA replication". It involves molecular nanomachines, which run along DNA like a car runs along a road, forcing open its double-helix, then making copies of the separate strands. However, many molecular barriers exist to the efficient running of these nanomachines potentially causing collisions that if the cell did not correct could be lethal. But what happens with such a replication nanomachine at collisions? Do they drop off, fall apart, are they helped to push through the barrier, or are new nanomachines built the other side of the barrier that can then move on unimpeded?Cells have evolved a suite of remarkable strategies that allow these nanoscale collisions to be repaired so that DNA replication can still occur. Other scientists have done great work previously in helping us to understand how DNA repair processes are achieved, but most of them have studied populations of many cells looking at an average of many molecules, instead of just individual nanomachines in single cells, mainly because the technology available to look at molecules in cells has not been good enough - until now! Here we will use the bacterial model organism Escherichia coli in which we can visualise and track individual nanomachines. We will also purify DNA and the replication nanomachines and barriers in the test tube and look at these at a single-molecule in the microscope. These two complementary approaches will really allow us to piece together observations of the molecular scale processes of just the purified components as well as what actually happens inside real, complex cell environments. This will allow us to see in exquisite detail when replication nanomachines collide, and how other molecules then respond to repair the collision. This revolutionary approach will be combined with new, exciting analysis of our real time "collision movies", with Artificial Intelligence or "AI" - this software consists of complex layers of interacting code, similar to the ways that nerve cells in the brain link together in the visual cortex. Each such nerve performs specific maths operations on inputs and passes the outputs to nerve cells in the next layer. In doing so a network of nerve cells can be "trained" to recognise key features and patterns from images, which can be really useful for the relatively noisy image data that we have in single-molecule microscopy both in test tubes and in living cells, to tell us where different molecules are and how they interact with each other. Our work will tell us what helps the replication nanomachines back on the DNA road if they have been blocked by an obstacle or even pushed off. Also, very importantly, it will allow us to understand how antibiotics which target DNA replication and repair actually work in cells. This will be important information, since many so-called "super-bugs" are emerging which no longer respond to antibiotics, and so this may aid other researchers in being able to design new types of better antibiotics. Following single molecules and establishing better techniques, as we aim to do here, will enable basically any scientist involved in DNA replication in any cells or organism to improve their work.
如果一本书中包含了制造和维持一个生物体所必需的信息,那么DNA将代表这本书的字母--它实际上是生命的字母表。任何生物体的一个关键特征是复制这些字母的能力,要么是为了制造更多的自己,要么是通过创造子细胞来创造后代。这个复制DNA的关键过程就是“DNA复制”。它涉及到分子纳米机器,就像汽车沿着道路行驶一样,沿着DNA行驶,迫使它的双螺旋打开,然后复制单独的链。然而,这些纳米机器的有效运行存在许多分子障碍,可能导致碰撞,如果细胞不正确,可能是致命的。但是这样一台复制纳米机器在碰撞时会发生什么呢?它们会脱落、解体吗?它们会被帮助穿过屏障吗?还是在屏障的另一边建造了新的纳米机器,然后可以不受阻碍地继续前进?细胞已经进化出一套非凡的策略,可以修复这些纳米级的碰撞,使DNA复制仍然可以发生。其他科学家以前在帮助我们了解DNA修复过程是如何实现的方面做了大量工作,但他们中的大多数人都研究了许多细胞的群体,而不仅仅是单个细胞中的单个纳米机器,主要是因为可用于观察细胞中分子的技术还不够好-直到现在!在这里,我们将使用细菌模式生物大肠杆菌,我们可以可视化和跟踪单个纳米机器。我们还将在试管中纯化DNA和复制纳米机器和屏障,并在显微镜下观察单个分子。这两种互补的方法将真正使我们能够将对纯化成分的分子尺度过程的观察以及真实的复杂细胞环境中实际发生的事情拼凑在一起。这将使我们能够看到复制纳米机器碰撞时的精致细节,以及其他分子如何响应以修复碰撞。这种革命性的方法将结合新的,令人兴奋的分析我们的真实的时间“碰撞电影”,与人工智能或“AI”-这种软件由复杂的交互代码层组成,类似于大脑中的神经细胞在视觉皮层中连接在一起的方式。每一个这样的神经对输入执行特定的数学运算,并将输出传递给下一层的神经细胞。在这样做的过程中,神经细胞网络可以被“训练”来识别图像中的关键特征和模式,这对于我们在试管和活细胞中的单分子显微镜中获得的相对嘈杂的图像数据非常有用,可以告诉我们不同分子的位置以及它们如何相互作用。我们的工作将告诉我们,如果复制纳米机器被障碍物阻挡甚至被推开,是什么帮助它们回到DNA道路上。此外,非常重要的是,它将使我们了解靶向DNA复制和修复的抗生素如何在细胞中发挥作用。这将是重要的信息,因为许多所谓的“超级细菌”正在出现,它们不再对抗生素产生反应,因此这可能有助于其他研究人员设计出更好的新型抗生素。正如我们在这里所做的那样,跟踪单分子并建立更好的技术将使任何参与任何细胞或有机体中DNA复制的科学家能够改进他们的工作。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Next Generation of Advances in Chromosome Architecture.
染色体结构的下一代进展。
- DOI:10.1007/978-1-0716-2221-6_1
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Leake MC
- 通讯作者:Leake MC
Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using Fluorescence Polarization Microscopy.
- DOI:10.1021/acs.jpcb.1c02708
- 发表时间:2021-08-05
- 期刊:
- 影响因子:0
- 作者:Backer AS;King GA;Biebricher AS;Shepherd JW;Noy A;Leake MC;Heller I;Wuite GJL;Peterman EJG
- 通讯作者:Peterman EJG
Sensitive bacterial V m sensors revealed the excitability of bacterial V m and its role in antibiotic tolerance
敏感的细菌 V m 传感器揭示了细菌 V m 的兴奋性及其在抗生素耐受性中的作用
- DOI:10.1101/2022.06.02.494477
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Jin X
- 通讯作者:Jin X
Supplementary Information from RecA and RecB: probing complexes of DNA repair proteins with mitomycin C in live
RecA 和 RecB 的补充信息:在活体中探测 DNA 修复蛋白与丝裂霉素 C 的复合物
- DOI:10.6084/m9.figshare.20407566
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Payne-Dwyer A
- 通讯作者:Payne-Dwyer A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Leake其他文献
Stoichiometry of Active DNA Replication Machinery Within Living Escherichia Coli Cells
- DOI:
10.1016/j.bpj.2009.12.3312 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
David Sherratt;Rodrigo Reyes-Lamothe;Mark Leake - 通讯作者:
Mark Leake
Dynamics and Co-Localization of the Electron Transport Chain of Escherichia Coli: Investigations Through Fluorescence Microscopy
- DOI:
10.1016/j.bpj.2009.12.1265 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Alex Robson;Mark Leake - 通讯作者:
Mark Leake
Mark Leake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Leake', 18)}}的其他基金
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Fellowship
The York Physics of Pyrenoids Project (YP3): Nanostructured Biological LLPS:Next-Level-Complexity Physics of CO2-fixing Organelles
约克核糖体物理学项目 (YP3):纳米结构生物 LLPS:二氧化碳固定细胞器的新水平复杂性物理学
- 批准号:
EP/W024063/1 - 财政年份:2022
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
Physics of Life Network+ (PoLNet3)
生命物理网络 (PoLNet3)
- 批准号:
EP/T022000/1 - 财政年份:2020
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
Biological physics of protein clustering in epigenetic memory and transcriptional control
表观遗传记忆和转录控制中蛋白质聚类的生物物理学
- 批准号:
EP/T002166/1 - 财政年份:2019
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
Tackling tricky twists - how does DNA gyrase function inside living cells?
解决棘手的问题——DNA 旋转酶在活细胞内如何发挥作用?
- 批准号:
BB/R001235/1 - 财政年份:2018
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
Pushing proteins off DNA - how do helicases unwind protein-coated DNA?
将蛋白质从 DNA 上推开 - 解旋酶如何解开蛋白质包被的 DNA?
- 批准号:
BB/P000746/1 - 财政年份:2017
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
Replication repair in real life: analysing how broken DNA replication machines are rebuilt inside cells.
现实生活中的复制修复:分析细胞内受损的 DNA 复制机器如何重建。
- 批准号:
BB/N006453/1 - 财政年份:2016
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
Advanced multidimensional optics to investigate biological complexity at the single-molecule level in living, functional cells
先进的多维光学技术可在活的功能细胞的单分子水平上研究生物复杂性
- 批准号:
EP/G061009/1 - 财政年份:2009
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
溶藻细菌及其胞外活性物质对球形棕囊藻的溶藻机制
- 批准号:41076068
- 批准年份:2010
- 资助金额:45.0 万元
- 项目类别:面上项目
不同栽培环境条件下不同基因型牡丹根部细菌种群多样性特征
- 批准号:31070617
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
水稻种子际固有细菌的群落多样性及其瞬时演替研究
- 批准号:30770069
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
应用非培养(Culture-independent)方法研究水稻植物内生细菌种群多样性及其与宿主的和谐联合
- 批准号:30370032
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 54.54万 - 项目类别:
Research Grant